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Preface

During my study at the Faculty of Applied Mathematics at the Uni-
versity of Twente, I started to appreciate doing research for practical
problems. At that time, I was working on a vehicle routing problem
for a Dutch parcel service. The problem was analyzed thoroughly and
the proposed solutions were implemented in practice. This gave me
much satisfaction. Since I liked doing research, I investigated the pos-
sibility of becoming a research assistant. Henk Zijm, the chairman of
the Production and Operations Management group of the University of
Twente, gave me a chance to study practical problems. I accepted this
opportunity.

This thesis is the result of four years of research in the area of shop
floor scheduling in small batch parts manufacturing shops. It concerns
extending existing procedures for shop floor scheduling with practical
features. In particular, it focuses on integral scheduling, aiming at an
optimal delivery performance under tight capacity constraints, including
setup times. Setup times occur, e.g., when machines must be cleaned
between two operations.

Many people contributed to my research in one way or another. I
thank them all. The people below, I like to thank in particular.

In the first place, I express my gratitude to Henk Zijm. He gave
me the opportunity to work in his group. His ideas and enthousiasm
for scientific research inspired me a lot. Second, I thank Steef van de
Velde. His knowledge of scheduling theory and presenting results can
be found throughout this thesis. Both Henk and Steef helped me a lot
in writing this thesis. The third man that read early versions of parts of
this thesis is Piet Weeda. His comments on the first chapters were very
useful. Unfortunately, he was not able to comment on early versions of
the other chapters.



vi P������

Until February of this year, Geatse Meester was my room mate at
the university. I appreciated his presence very much. Geatse helped
me many times in getting more familiar with the concepts used in shop
floor control and almost always had an answer to my questions about
production techniques.

Next, I thank all other members of the Production and Operations
Management group. They contribute to a very pleasant working at-
mosphere and the needed interruptions of a working day.

Several students contributed to my research. I like to mention
Alexander Belderok, Dinand Reesink, Corina van Unen, Robert Leus-
sink, Marcel Wildschut, Peter Klein Lebbink, and Anneleen van Beek.
Thanks to you all.

I also like to mention here the people that work at FLEX, Engineers
in Logistic Systems, especially the three managers Wik Heerma, Nico
Lok, and Gerrit-Jan Steenbergen. I found the cooperation with them
always a pleasant and fruitful experience. Thanks to them as well.

Last, but certainly not least, I like to thank my family, in particular
my father. Although life has not been easy for him, he always did his
utmost best to make life as easy as possible for me. I like to finish this
preface with one Dutch sentence for him: Pa, hartstikke bedankt voor
al je goede zorgen, met name in de afgelopen zeven jaar!
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Summary

In this thesis, we analyze and develop algorithms for scheduling prob-
lems in small batch parts manufacturing shops. Short leadtimes and re-
liable delivery dates have become dominant market performance indica-
tors. We show that integral shop floor planning and scheduling systems
may result in shorter leadtimes and more reliable delivery dates. The
scheduling problems that arise are in fact classical job shop problems
with additional side constraints. After a brief introduction to schedul-
ing theory, we discuss the classical job shop problem and algorithms to
solve it.

One of the algorithms we discuss is the Shifting Bottleneck (SB) pro-
cedure of Adams et al. [2], which decomposes the problem of scheduling
a job shop into a series of single-machine scheduling problems. Vaessens
et al. [79] show that in general the SB procedure yields solutions of
good quality in reasonable time. Each instance of the classical job shop
problem can be represented by a disjunctive graph. We show that by
changing the properties of this graph and by changing the algorithms for
the single-machine scheduling problems, the SB procedure can be ex-
tended to deal with various practical features, including release and due
dates of jobs, parallel machines, assembly steps, simultaneous resource
requirements, and setup times.

The occurrence of setup times on one or more machines in the shop
results for those machines in single-machine scheduling problems in
which setup times have to be considered. In these problems, we have
to find a trade-off between efficiency and leadtime performance. For
the special case of family setup times, we develop a branch-and-bound
algorithm. For lower bounding purposes, we introduce the concept of
setup jobs and derive sufficient conditions to introduce them without
loosing the optimal solution. We generalize the branch-and-bound al-
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gorithm to solve the parallel-machine scheduling problem with family
setup times and characterize an optimal solution for a broad class of
parallel-machine scheduling problems.

Our computational experiments indicate that the SB procedure sig-
nificantly outperforms priority rules for a shop in which setup times
and assembly of parts to end products occur. The SB procedure with
extensions is part of a commercial shop floor scheduling system called
J��P�����. We discuss this system and its use in a company pro-
ducing printed circuit boards. The introduction of J��P����� in
this company has been most satisfactory: the output and the delivery
performance increased, whereas the throughput times decreased signif-
icantly.
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Chapter 1

Introduction

Baker [6] defines scheduling as the allocation of resources over time to
perform a collection of tasks. This chapter starts with the introduc-
tion of a simple scheduling problem, in which conference visitors must
perform a number of activities. We use this example mainly to clar-
ify notions used in scheduling theory. Section 1.2 introduces machine
scheduling problems, a class of scheduling problems in which the re-
sources, or machines, can perform at most one task, or operation, at
a time. This thesis concentrates on deterministic machine scheduling
problems in which we know all data in advance. In Section 1.3, we give
an overview of the contents of this thesis. For an extensive introduc-
tion to scheduling theory, see, e.g., the text books by Baker [6, 7] and
French [28], the survey of Lawler et al. [52], and the books by Morton
and Pentico [59], Brucker [12], and Pinedo [63].

1.1 Introductory example1

Pete, Steve, Art, and Hank, four scientists, go to the same OR con-
ference. The organizing committee has a special low budget option for
staying in a student flat. Of course, the four scientists decide to take
this stroke of luck. Now they must share a bathroom, a kitchen, a
telephone, and an iron heater. Last night, the four conference visitors
decided to walk together to the conference site. Before they leave, the

1The story, all names, characters and incidents in this example are fictitious. No

identification with or similarity to actual persons, living or dead, or to actual events

is intended or should be inferred.
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men like to take a shower, make breakfast, call their wives, and iron
their shirts, each in a particular order. The bathroom and the kitchen
are very small: only one person at a time can use the bathroom and
make breakfast. If a person starts a certain activity, e.g., taking a
shower, then he finishes this activity without interruption: preemption
of activities, i.e., interruption of activities and resumption later on, is
not allowed.

Pete gets up at 7.00 AM, and the first thing he likes to do is to
call his wife for 10 minutes. Then, he has breakfast for 20 minutes.
After breakfast, Pete wants to iron his shirt. Since he is unfamiliar
with domestic tasks, this will take him 25 minutes. Finally, he takes
a shower for 20 minutes. Steve gets up at 7.15 AM. He also likes first
to call his wife. Steve, an investor with some successful moments, also
needs to call his local internet supplier to check out the stock market.
All in all, Steve needs the telephone for 25 minutes. After this, he needs
10 minutes to iron his shirt, 20 minutes to eat, and 15 minutes to take
a shower, in this order. Art also gets up at 7.15 AM. The first thing
he likes to do is to take a shower for 20 minutes. Then, Art likes to
have breakfast and, since this is the most important meal of the day,
he does this in a relaxed and comprehensive way for 40 minutes. After
this, Art quickly irons his shirt and calls his wife. Both activities take
10 minutes. Hank, finally, wakes up at 7.30 AM. After having breakfast
for 25 minutes, he irons his shirt for 15 minutes, and calls his wife for
10 minutes. In the bathroom, Hank trims his beard and takes a shower.
His time in the bathroom totals 30 minutes. Table 1.1 summarizes
the order in which each person performs the activities and the amount
of time each activity takes. In this table, the name of each person is

person gets up at order of activities required time (minutes)
P 7.00 T K I B 10 20 25 20
S 7.15 T I K B 25 10 20 15
A 7.15 B K I T 20 40 10 10
H 7.30 K I T B 25 15 10 30

Table 1.1: The data of the introductory example.

abbreviated by the first letter. The first letter of the resources, that
is, the telephone, the kitchen, the iron heater, and the bathroom, are
used to indicate the activities that take place using these resources. The
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conference program starts at 8.30 AM, but given the data in Table 1.1,
Art and Hank will unavoidably be late. Since the four conference visitors
decided to make the long walk to the conference hotel together and the
conference program is very appealing this morning, their objective is
to leave as soon as possible. This means that the time to complete all
activities must be minimized.

The order in which the men perform a certain activity is called a se-
quence . Table 1.2 displays for each activity the sequence the men came
up with. For example, P-S-A-H is the sequence for using the telephone.

activity 1st 2nd 3rd 4th
T P S A H
K H P A S
I H S P A
B A P S H

Table 1.2: Possible sequence for each activity.

This means that Pete is the first to call his wife. He is followed by Steve,
Art, and Hank, in this order. A schedule specifies the time slot in which
each activity is performed. Figure 1.1 is a graphical representation of
a possible schedule, of which the sequence for each activity is displayed
in Table 1.2. Such a graphical representation of a schedule is called
a Gantt chart , after its developer Gantt [30]. In this chart, time is
shown along the horizontal axis and the resources are shown along the
vertical axis. Each rectangle represents an activity involving the cor-
responding resource during the corresponding time interval. Steve, for
example, uses the telephone from 7.15 AM until 7.40 AM. The schedule
depicted in Figure 1.1 is feasible : the first activity of each researcher
starts after he gets up, the order in which the men want to perform
their activities is followed, and no activity is performed by more than
one person at the same time. Note that we cannot start any activity
earlier without changing the sequences in which the men perform the
activities. Schedules with this property are called left-justified sched-
ules. In this schedule, the men leave for the conference at 10.00 AM.
Although the scientists are supposed to have a profound knowledge of
scheduling theory, they did not solve this practical problem very well.
It is left to the reader to find a feasible schedule in which the men leave
as early as possible.
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Figure 1.1: Graphical representation of a possible schedule.

1.2 Machine scheduling

If scheduling was limited to determining when conference visitors should
take a shower and iron their shirts, then no one would study it. In
practice, the resources to be scheduled include machines, processors,
personnel, and vehicles. In the example, the activities to be scheduled
are taking a shower, having breakfast, ironing a shirt, and making a
phone call. In practice, the activities to be scheduled are, e.g., drilling,
adding and subtracting, repairing a flat tire, and transporting people.
Most of these scheduling problems can be modeled as scheduling jobs
on machines. The generic term for the theory that studies these models
is machine scheduling theory. The processing of a job on a machine is
called an operation. The order in which a job must visit the machines
for processing is called the routing of this job.

In this thesis, we concentrate on scheduling problems in small batch
parts manufacturing shops ; these are shops that produce a large variety
of parts in small batches. In this context, a batch is a number of identi-
cal parts that are produced contiguously. Due to this variety, dedicated
production lines are usually not beneficial. These shops therefore often
have a functional layout in which operations are performed by versatile
machines. In order to perform such a variety of operations, machines
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must be prepared, or set up, for some specific operation, e.g., by load-
ing appropriate cutting tools or by altering certain process parameters,
usually at the cost of a loss of time and, hence, of capacity. In the past,
setup times were quite large and economies-of-scale principles dictated
large production batches. Large batches, however, induce long man-
ufacturing throughput times, in particular if the number of machines
involved in producing a part is large.

In the last twenty years, however, short manufacturing leadtimes
and a high delivery performance have become dominant market perfor-
mance indicators; cf. Blackburn [11]. At the same time, the introduction
of computer technology on the shop floor, such as in CNC machines and
assembly robots, has reduced setup times. Many companies use priority
rules for scheduling their machine shops. Priority rules are myopic, how-
ever, and may result in poor solutions, particularly when setup times
are still significant. Clustering jobs with similar setup characteristics,
a rule of thumb to pursue efficiency, may result in a poor delivery per-
formance for other jobs. Even overall efficiency may decrease, since
clustering jobs on one machine can cause idleness of another machine,
because the latter does not receive the right jobs in time.

Computer technology and in particular advanced information sys-
tems (see, e.g., Tiemersma [76] and Arentsen [5]) provide the basis for
implementing integral shop floor planning and scheduling systems. In
this thesis, we concentrate on the design and analysis of algorithms
for practical shop floor scheduling problems. We show that an integral
shop floor planning and scheduling system results in a better delivery
performance and smaller manufacturing leadtimes.

This section continues as follows. First, we introduce in Section 1.2.1
two single-machine scheduling problems. The first problem is easy to
solve and we introduce it to examplify a generic technique for proving
optimality of a scheduling rule. The second problem is closely related to
the first, but is much more difficult to solve. This problem is important,
because it appears as a subproblem in decomposition based approaches
for scheduling machine shops. It is also used to schedule a shop with a
single critical, or bottleneck, machine. Due to the large variety of ma-
chine scheduling problems, we need a classification scheme. We discuss
such a scheme in Section 1.2.2. To distinguish between easy-to-solve
and intractable problems, Section 1.2.3 reviews the basic concepts of
complexity theory.
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1.2.1 Two single-machine scheduling problems

In this section, we consider machine scheduling problems in which we
only have a single machine. Each job consists of one operation. In the
first problem, a set J of n jobs J1, J2, . . . , Jn needs to be scheduled on
a single machine. The machine is continuously available for processing
from time 0 onwards, and can process at most one job at a time. Each
job Jj (j = 1, 2, . . . , n) is available from time 0 onwards and needs
uninterrupted processing during pj time units, also called the processing
time . Associated with each job Jj , there is a due date dj by which
the job should be completed. A schedule σ specifies for each job Jj a
completion time Cj(σ), i.e., the time at which this job finishes. The
lateness Lj(σ) of Jj in schedule σ is defined as the difference between
its completion time in σ and its due date, i.e.,

Lj(σ) = Cj(σ)− dj .

The objective is to find a schedule σ∗ for which the maximum lateness
Lmax(σ∗) is minimal, i.e.,

Lmax(σ
∗) = min

σ∈Ω
Lmax(σ),

with Ω the set of feasible schedules and

Lmax(σ) = max
j=1,...,n

Lj(σ).

σ∗ is called an optimal schedule. Without loss of generality, we may
assume for this example (and all other scheduling problems we consider)
that all data are integral numbers. Note that we may restrict ourselves
to left-justified schedules, i.e., schedules in which no job can start earlier
without changing the sequence of jobs. Each sequence of jobs uniquely
induces a left-justified schedule and vice versa.

Consider the following rule: schedule the jobs in order of non-de-
creasing due dates. This rule is known as the Earliest Due Date (EDD)
rule or Jackson’s rule (Jackson [44]). The following theorem proves that
the EDD produces optimal schedules. We have included the proof of
this theorem to introduce a generic technique for proving optimality of
a scheduling rule.

Theorem 1.1 (Jackson [44]) The EDD rule yields an optimal schedule.
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Proof. Let σ1 be any optimal schedule and suppose that σ1 differs
from the schedule that results from Jackson’s rule, which we denote
by σJ . Reindex the jobs so that Jj is the jth job in σJ . We then
have that d1 ≤ d2 ≤ . . . ≤ dn. We will transform σ1 into σJ without
losing optimality. Denote the index of the ith job in σ1 by [i], i.e., J[i]
is the ith job in σ1. Let [j] be the index of the first job in σ1 such
that [j] > [j + 1] and therefore d[j] ≥ d[j+1]. Let σ2 be the schedule
that results from σ1 by swapping J[j ] and J[j+1]; see Figure 1.2.

σ2 J[j+2] J[n-1] J[n]J[j]J[1] J[2] J[j+1]J[j-1]

σ1 J[j+2] J[n-1] J[n]J[j]J[1] J[2] J[j+1]J[j-1]

Figure 1.2: The schedules σ1 and σ2.

The relation C[i](σ1) = C[i](σ2) holds for 1 ≤ i ≤ n, i �= j, j + 1
and therefore L[i](σ1) = L[i](σ2) for these jobs. Also, L[j+1](σ2) =
C[j+1](σ2) − d[j+1] ≤ C[j+1](σ1) − d[j+1] = L[j+1](σ1) and L[j](σ2) =
C[j](σ2)−d[j] = C[j+1](σ1)−d[j ] ≤ C[j+1](σ1)−d[j+1] = L[j+1](σ1). Thus,
we have that Lmax(σ2) ≤ max1≤i≤n,i �=j L[i](σ1) ≤ max1≤i≤n L[i](σ1) =
Lmax(σ1) and σ2 must also be an optimal schedule. By repeating this
argument, we can transform σ1 into σJ without losing optimality. �

The second problem we consider is the same as the first problem,
except that the jobs have release dates, before which they cannot be
processed. We denote the release date of job Jj by rj . Consider the
extended Jackson rule: at any time T that the machine is available for
processing, process without interruption an unprocessed, available job
that has the smallest due date. A job Jj is available at time T , if rj ≤ T .
In general, the extended Jackson rule does not yield an optimal solution.
In fact, it is very unlikely that a simple rule like this can be guaranteed to
deliver an optimal solution for all instances of this problem. A problem
instance is formed by specific choices for the parameters of the problem
type. We will point out that there exists strong circumstantial evidence
for this claim in Section 1.2.3. Consider the instance of which the data
are given in Table 1.3. For this instance, the extended Jackson rule
produces the schedule σ = J1−J2−J3−J4−J5−J6−J7 with Lmax(σ) =
L5(σ) = 3; see Figure 1.3. An optimal schedule σ∗ has Lmax(σ∗) = 0,
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Jj J1 J2 J3 J4 J5 J6 J7
rj 0 10 13 11 20 30 30
pj 6 5 6 7 4 3 2
dj 33 43 24 26 29 42 50

Table 1.3: A seven-job instance for the second problem.

J7J1 J2 J3 J4 J5 J6

3735322821151060

Figure 1.3: Schedule produced with the extended Jackson rule.

however; see Figure 1.4. We see that it is advantageous to keep the

J7J1 J2J3J4 J5 J6

3836332824181160

Figure 1.4: An optimal schedule.

machine idle at time 10, to be able to perform jobs with small due
dates early. The difficulty is to decide when to keep the machine idle,
although there are jobs ready to be processed.

Although the extended Jackson rule is an approximation algorithm,
not an optimization algorithm, it has some agreeable properties, such
as a performance guarantee. Carlier [17] uses the rule to develop an
optimization algorithm for this problem. To clarify how this algorithm
works, let us now analyze the extended Jackson rule. Let U be any
subset of J . Using a critical path argument, it easily follows that (cf.
Carlier [17])

h(U) = min
Jj∈U

rj +
∑
Jj∈U

pj −max
Jj∈U

dj

is a lower bound on the optimal solution value L∗
max, i.e.,

h(U) ≤ L∗
max, for any U ⊆ J .

We use this lower bound to prove the next theorem.
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Theorem 1.2 (Carlier [17]) If the schedule σ produced by the extended
Jackson rule is not optimal, then there exists a critical job Jc and a
critical job set C ⊆ J such that

1. h(C) > L∗
max − pc;

2. in any optimal schedule, job Jc is scheduled either before all jobs
in C, or after all jobs in C.

Proof. First of all, reindex the jobs in order of increasing completion
times in σ. Suppose that σ is not an optimal schedule. Let Jk be the last
job in σ for which Lk(σ) = Lmax(σ) and let Jj be the first job in σ for

which we have that Ck(σ) = rj +
∑k

i=j pi. Note that rj = minj≤i≤k ri.
Also, note that dk < maxj≤i≤k di, and that Jk �= Jj , because otherwise
we would have that

Lk(σ) = rj +
k∑

i=j

pi − dk

= min
j≤i≤k

ri +
k∑

i=j

pi − max
j≤i≤k

di

= h({Jj , . . . , Jk})
≤ L∗

max

and therefore σ would be an optimal schedule.
Let Jc be the last job in σ belonging to the set {Jj , . . . , Jk} for which

dc > dk and define C = {Jc+1, . . . , Jk}. Note that dc > di for all Ji ∈ C.
Due to the way σ is constructed, we have that at start time Sc(σ) of Jc
in σ no job belonging to C is available for processing, i.e., ri > Sc(σ) for
all Ji ∈ C. Therefore, we have that minJi∈C ri > Sc(σ) = rj +

∑c−1
i=j pi.

Moreover, we have that dk = maxJi∈C di. It then follows that

h(C) = min
Ji∈C

ri +
k∑

i=c+1

pi −max
Ji∈C

di

> rj +
k∑

i=j

pi − pc − dk

= Lk(σ)− pc
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= Lmax(σ)− pc
≥ L∗

max − pc.

We now prove the second part of the theorem that characterizes
the set of optimal schedules. Let σ∗ be any optimal schedule without
Property 2, that is, with Jc scheduled somewhere in-between the jobs
in C. Let Jq ∈ C be the job that is processed later in σ∗ than any other
job in C. Then we have that

Lq(σ
∗) ≥ min

Ji∈C
ri +

∑
Ji∈C

pi + pc − dq

≥ min
Ji∈C

ri +
∑
Ji∈C

pi −max
Ji∈C

di + pc

= h(C) + pc
> L∗

max,

which is a contradiction. �

Based on Theorem 1.2, Carlier [17] develops an effective optimiza-
tion algorithm for this problem. In this algorithm, we start with schedul-
ing the jobs with the extended Jackson rule and check whether we can
verify the optimality of the schedule σ using the arguments in the first
part of the proof of Theorem 1.2. If we cannot verify the optimality of
σ, then we determine the critical job Jc and the critical job set C and
compute the lower bound h(C). If h(C) = Lmax(σ), then σ is yet verified
to be optimal, otherwise two new problems are created: one in which
Jc precedes the jobs in C and one in which Jc succeeds the jobs in C.
These subproblems are solved in the same way as the original problem:
the extended Jackson rule is used to schedule the jobs, the schedule is
checked for optimality, the critical job and job set are determined, and,
if necessary, two new subproblems are created. This process continues
until all subproblems are solved. The best found schedule is an optimal
schedule. Based on the next two theorems, Carlier tries to force that
the critical job precedes or succeeds the critical job set by changing the
release date and the due date of the critical job.

Theorem 1.3 (Carlier [17]) If Jc precedes all jobs in C in any optimal
solution, then the optimal solution value and the optimal solution are
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preserved if we let

dc = dk −
∑
Ji∈C

pi.

Proof. Let σ∗ be any optimal solution and let Jq be the last job in
σ∗ that belongs to C. Then we have that

Cc(σ
∗) ≤ Cq(σ

∗)−
∑
Ji∈C

pi,

and hence that

Cc(σ
∗)− (dk −

∑
Ji∈C

pi) ≤ Cq(σ
∗)− dk

≤ Cq(σ
∗)− dq

≤ L∗
max,

since dq ≤ dk. �

Theorem 1.4 (Carlier [17]) If Jc succeeds all jobs in C in any optimal
solution, then the optimal solution value and the optimal solution are
preserved if we let

rc = min
Ji∈C

ri +
∑
Ji∈C

pi.

Proof. Since Jc cannot start before all jobs in C are completed,
we must also have that Sc(σ∗) ≥ minJi∈C ri +

∑
Ji∈C

pi in any optimal
schedule σ∗. �

Note that this type of adjustment does not guarantee that Jc will
be scheduled before or after the jobs in C, but aims at strengthening
the lower bounds h(C) of the subproblems.

Let us now return to the instance of Table 1.3. Note that we do
not need to reindex the jobs: they are already indexed in order of
increasing completion times in σ. We cannot conclude that σ is an
optimal solution: L5(σ) = Lmax(σ) = 3, j = 2 is the first job index for
which we have that C5(σ) = rj +

∑5
i=j pi, and d5 < max{d2, d3, d4, d5}.

The critical job is job J2 and the critical job set C = {J3, J4, J5} with
h(C) = 11 + 17− 29 = −1. Since h(C) < Lmax(σ), two subproblems P1
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and P2 are created. In P1, J2 is supposed to precede the jobs J3, J4,
and J5; in P2, J2 is supposed to succeed them.

For problem P1, we set d2 = d5 −
∑5

i=3 pi = 12. The extended
Jackson rule produces then the same schedule as before, but now d5 =
max{d2, d3, d4, d5} and hence this schedule is optimal for problem P1,
where we have to schedule J2 before J3, J4, and J5. We do not need to
create subproblems from P1.

For the problem P2, we set r2 = min3≤i≤5 ri +
∑5

i=3 pi = 28. The
extended Jackson rule results in de schedule σ(2) = J1 − J4 − J3 − J5 −
J2 − J6 − J7 with Lmax(σ(2)) = L3(σ(2)) = 0. For this schedule, the
critical job is J4 and the critical job set C = {J3} with h(C) = −6 <
Lmax(σ(2)) = 0. We therefore create two subproblems P3 and P4, but
it appears that these problems do not result in a better solution. The
schedule σ(2) is therefore an optimal schedule.

1.2.2 Problem classification

Due to large variety of machine scheduling problems, it is convenient
to have a classification scheme. We follow the three-field classification
α|β|γ, which was introduced by Graham et al. [38] and revised by Lawler
et al. [51]. In this classification, a machine scheduling problem is iden-
tified by machine characteristics, job characteristics, and an objective
function.

The first field, α = α1α2µ, specifies the machine characteristics of
a problem. The parameter α2 ∈ {◦, 1, 2, . . .} indicates the number of
machines that must be scheduled, where ◦ is the symbol to denote an
unspecified parameter value. In this case, ◦ means that the number of
machines is unspecified. The parameter α1 ∈ {◦, P,Q,R, J,F,O} rep-
resents the machine environment. If α1 = ◦ and α2 = 1, then we have
a single-machine scheduling problem. If α1 ∈ {P,Q,R}, then we have a
parallel-machine scheduling problem in which we must schedule each job
on one of the parallel machines. We use P , Q, and R to denote that we
have identical parallel machines, uniform parallel machines, and unre-
lated parallel machines, respectively. If the machines are identical , then
the processing time of each job is the same on all machines. Uniform
machines work at different speeds, i.e., the processing time of each job
differs by a constant factor for the individual machines. If the machines
are unrelated, then there is no relation between the processing times of
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the jobs and the machines. J , F , and O indicate that we have a job
shop, flow shop, and open shop problem, respectively. In job shops,
each job has its own routing through the shop, whereas in flow shops
the machines can be indexed so that each job visits the machines in
order of increasing machine indices. In job shops and flow shops, the
sequence in which a job visits the machines is given. This sequence is
free for jobs in open shop problems: the sequence in which a job visits
the machine can be determined by the scheduler. We use the parame-
ter µ for further machine characteristics; µ = down, e.g., indicates that
machines may have down times: these are intervals in which a machine
is not available for processing jobs.

The second field, β ⊆ {β1, β2, . . .}, describes the job characteristics
of a problem. We discuss only some of them. We use β1 = ◦ to indicate
that the jobs have the same release date and β1 = rj to indicate that
the jobs have different release dates. β2 = ◦ specifies that the jobs
must be processed without interruption, whereas β2 = pmtn specifies
that preemption is allowed, i.e., we may start with the processing of
a job, interrupt it, and finish it later on. The last characteristic we
discuss, indicates whether setup times occur between the processing of
different jobs. β3 = ◦ indicates that no setup times occur. β3 = sij
and β3 = si specify that sequence dependent and sequence independent
setup times occur. In problems with sequence dependent setup times,
the setup time between the processing of two consecutive jobs depends
on both jobs. In problems with sequence independent setup times, the
setup time between the processing of two consecutive jobs of different
types depends only on the type of the second job.

Finally, the last field, γ, specifies the objective function that we want
to minimize. Some important values for γ are Cmax, Lmax,

∑
wjCj , and∑

Uj , which represent that the time to process all jobs, or makespan,
the maximum lateness, the weighted sum of completion times, and the
number of tardy jobs, i.e., jobs that finish after their due dates, respec-
tively, must be minimized. Combinations of objective functions are also
possible.

We end this section with giving the notation of two machine schedul-
ing problems. In the second problem of Section 1.2.1, we must minimize
the maximum lateness of jobs with release dates that need to be sched-
uled without preemption on a single machine. This problem is denoted
by 1|rj |Lmax. In the problem J3|pmtn, si|

∑
Uj , we must minimize the
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number of late jobs in a job shop with three machines. All jobs have
the same release date, preemption of jobs is allowed, and sequence in-
dependent setup times occur.

1.2.3 Complexity theory

Machine scheduling problems belong to the class of combinatorial opti-
mization problems in which there is a finite number of relevant solutions.
Each solution is measured by an objective function and we want to find
the solution with the best solution value. Since there is a finite number
of relevant solutions, an obvious way to find a best solution seems to be
to enumerate all solutions and store a best. This is, however, a feasible
method only for very small problems. Consider, for example, the first
problem of Section 1.2.1, the problem 1||Lmax. For this problem, there
are n! relevant schedules, namely the n! left-justified schedules: we have
n possible jobs to schedule as the first job, then n− 1 possible jobs for
the second position in the schedule, and so on. Suppose that we could
evaluate one million schedules per second. For a problem with 10 jobs,
we then need less than four seconds to evaluate all possible schedules.
For a problem with 15 jobs, we would already need more than 15 days
to evaluate all possible schedules. For a problem with 20 jobs, we would
need more than 770 centuries....

So, there is good reason to look for more efficient algorithms than
complete enumeration. The running time of an algorithm is measured
by an upper bound on the number of basic arithmetic operations, such
as additions and multiplications, it needs as a function of the size S(I)
of an instance I. The size of an instance is defined as the number of
symbols to represent it. For machine scheduling problems, the size of
an instance is often a polynomial of n, the number of jobs, and m,
the number of machines. The data to specify an instance of a problem
is called the input. The string p1, d1, p2, d2, . . . , pn, dn, for example,
can be used to specify an instance of the problem 1||Lmax. We say
that the running time of an algorithm is of order f(S(I)), denoted
by O(f(S(I)), if there are constants c and S0 such that the number of
basic arithmetic operations is bounded from above by c ·f(S(I)) for any
problem instance with S(I) ≥ S0. In the same way, we can measure
how much memory space an algorithm needs for storing data. We say
that a problem is polynomially solvable, if there exists an algorithm that
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requires O(f(S(I)) time for every instance I, with f a polynomial. Note
that if an algorithm runs in polynomial time, then the space requirement
is of polynomial size also.

A decision problem is a question to which the answer is either ‘yes’ or
‘no’. Note that an optimization problem can easily be transformed into
a finite series of decision problems by binary search over the interval
[lb, ub], where lb and ub are an integral lower and an integral upper
bound on the optimal solution value. For the 1|rj |Lmax problem, e.g.,
the associated decision problem is: ‘Does there exist a feasible solution
with Lmax ≤ k?’, with k ∈ [lb, ub]. If the logarithm of the difference
between ub and lb is bounded from above by a polynomial in S(I) for
every instance I, then an optimization problem is polynomially solvable
if the associated decision problem is polynomially solvable.

For the 1|rj |Lmax problem, we can verify easily, i.e., in polynomial
time, whether a given schedule σ has Lmax(σ) ≤ k. The class NP con-
sists of the decision problems for which we can easily verify whether a
given solution is a ‘yes’ or a ‘no’ answer. An input that results in a
‘yes’ answer is called a ‘yes’ input. The class P consists of all decision
problems that are polynomially solvable. The decision problem associ-
ated with the problem 1||Lmax belongs to P , because a simple sorting
algorithm, which takes O(n logn) time, solves the optimization prob-
lem; see Section 1.2.1. Note that P ⊆ NP . It is widely assumed that
P �= NP: NP contains many difficult problems for which no polyno-
mial algorithm has been found, in spite of all the research effort spent
on them. The following definition is given by Lawler et al. [52].

Definition 1 A problem A is polynomially reducible to problem B if
and only if there exists a polynomial-time computable function τ that
transforms inputs for A into inputs for B such that x is a ‘yes’ input
for A if and only if τ(x) is a ‘yes’ input for B.

Note that reducibility is a transitive relation: if A is polynomially re-
ducible to B and B is polynomially reducible to C, then A is polyno-
mially reducible to C. The following definition is useful to classify hard
problems.

Definition 2 A problem is NP-complete if it is a member of the class
NP and every problem in NP is polynomially reducible to it.
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The NP-complete problems are the hardest problems in NP: if one of
the NP-complete problems is polynomially solvable, then all problems
in NP are polynomially solvable. An optimization problem is not a
member of the class NP, but it is called NP-hard if the associated
decision problem is NP-complete. For instance, the problem 1|rj |Lmax

isNP-hard, and hence it is very unlikely that it is polynomially solvable.
Indeed, Carlier’s algorithm is effective on the average but comes down
to complete enumeration for certain instances.

Complexity theory is useful for machine scheduling for at least two
reasons. First, if a problem is NP-hard, then for optimization it is
justified to develop enumerative algorithms, because we cannot expect
to find a polynomial optimization algorithm. Enumerative algorithms,
however, may take much computation time. Second, if a problem is
NP-hard, then it is justified to use approximation algorithms, too. We
then may find good quality solutions in reasonable time. For more
information on complexity theory, we refer to Garey and Johnson [31],
Cook [22], and Karp [47].

1.3 Overview of the thesis

The problem of scheduling jobs in a machine shop is often modelled
as a job shop scheduling problem. Chapter 2 introduces this problem
and discusses optimization as well as approximation algorithms. Among
the latter is the Shifting Bottleneck (SB) procedure of Adams et al. [2].
It is an intuitively appealing algorithm that decomposes the job shop
scheduling problem into a series of 1|rj |Lmax problems, which can be
solved effectively by Carlier’s algorithm (Carlier [17]). The SB proce-
dure generates schedules of good quality and requires relatively little
computation time, which is a necessary condition for most practical
applications. The job shop scheduling problem is, however, “clean” in
that it ignores most of the practical side constraints, such as simul-
taneous resource requirements, setup times, and convergent job rout-
ings. A nice feature of the SB procedure is that it can be extended
to include such practical side constraints without much algorithmic ad-
justment. We call a machine shop with practical features a practical
job shop. Chapter 3 reviews various extensions to the SB procedure.
For each extension, we describe how to model it. For some extensions,
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the decomposition of a practical job shop problem results in machine
scheduling problems other than the 1|rj |Lmax problem. For example,
if one of the machines is a machine with sequence independent setup
times, then the decomposition results for this machine in the problem
1|rj , si|Lmax. Chapter 4 discusses an optimization algorithm for this
problem in detail, whereas Chapter 5 deals with the identical parallel
machine equivalent of this problem, i.e., the problem P |rj , si|Lmax. An
important practical extension of the SB procedure is the extension that
allows assembly of components to other components or end products.
Chapter 6 presents our computational experiences with the SB proce-
dure with this extension. The SB procedure with extensions is part of
a commercial scheduling system called J��P�����. In Chapter 7, we
discuss this system and experiences with it at Cityprint B.V., a man-
ufacturer of printed circuit boards. Finally, in Chapter 8, we end with
some conclusions and recommendations for further research.
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Chapter 2

Job shop scheduling

2.1 Introduction

In job shop scheduling, we consider a shop consisting of m machines
M1,M2, . . . ,Mm on which a set of n jobs J1, J2, . . . , Jn needs to be
processed. Each machine is available for processing from time 0 onwards
and can process at most one job at a time. Each job Jj consists of a chain
of operations O1j ,O2j , . . . ,Onj ,j , where nj denotes the number of opera-
tions of job Jj . Operation O1j is available from time 0 onwards, whereas
operation Oij can only be processed after the completion of operation
Oi−1,j (i = 2, . . . , nj). Operation Oij (j = 1, 2, . . . , n; i = 1, 2, . . . , nj)
needs uninterrupted processing on a given machine µij during a given
non-negative time pij . The objective usually considered in the literature
is to find a schedule that minimizes the makespan Cmax, that is, to find
a schedule in which the time to process all jobs is minimal. Note that
we may restrict ourselves again to left-justified schedules. This job shop
problem is denoted as J||Cmax.

The job shop scheduling problem is NP-hard and also difficult to
solve to optimality from an empirical point of view. In fact, it is one
of the hardest combinatorial optimization problems. For example, a
problem with only 10 jobs and 10 machines, proposed by Fisher and
Thompson [27], remained unsolved for almost 25 years, in spite of the
research effort spent on it. Many solution approaches have been pro-
posed to solve the job shop scheduling problem. Most of them make use
of a disjunctive graph to represent an instance. In the next section, we
describe this graph, which is due to Roy and Sussman [68], in detail. In
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Section 2.3, we discuss the most prominent algorithms for the job shop
scheduling problem. These algorithms include branch-and-bound algo-
rithms and local search algorithms based on taboo search and simulated
annealing. The Shifting Bottleneck (SB) procedure of Adams et al. [2]
is a local search algorithm that decomposes the job shop problem into
a series of single-machine scheduling problems. Since the SB procedure
is the basis of the next chapters, we devote a separate section to this
procedure. In Section 2.5, we end this chapter with some conclusions.

2.2 Disjunctive graph representation

Each instance of the job shop scheduling problem of minimizing make-
span can be represented by a disjunctive graph G = (V,A,E), with V
a set of nodes, A a set of arcs, and E a set of orientable edges. For each
operation Oij , V contains a node vij with weight pij ; V also contains
two auxiliary nodes s and t, both with weight 0. V is equal to {vij | j =
1, 2, . . . , n; i = 1, 2, . . . , nj}∪ {s, t}. If we denote an arc from node α to
node β by 〈α,β〉, thenA = {〈s, v1j〉 | j = 1, 2, . . . , n}∪{〈vij , vi+1,j〉 | j =
1, 2, . . . , n; i = 1, 2, . . . , nj − 1} ∪ {〈vnj ,j , t〉 | j = 1, 2, . . . , n}, that is, A
contains an arc from the source s to each node that represents any first
operation, from each node representing an operation to the node that
represents the next operation of the same job, and from each node that
represents any last operation to the sink t. We denote an edge between
nodes α and β by (α,β). Note that we have (α, β) = (β,α), because an
edge is not oriented. E consists of edges between nodes corresponding
to operations that need to be processed on the same machine, i.e., E =
{(vij , vgh) | j, h = 1, 2, . . . , n; i = 1, 2, . . . , nj ; g = 1, 2, . . . , nh; vij �= vgh;
µij = µgh}. The weights of all arcs and edges are 0.

Table 2.1 shows the data of an instance of the job shop problem
with three machines and three jobs, where each job consists of three
operations. The objective is to minimize the makespan. Figure 2.1

Jj µ1j µ2j µ3j p1j p2j p3j
J1 M1 M3 M2 4 7 6
J2 M2 M1 M3 3 5 8
J3 M3 M2 M1 2 6 7

Table 2.1: Data for example instance.
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shows the graph corresponding to this instance.
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Figure 2.1: Graph representing example instance.

Let S = 〈a1, a2, . . . , ak〉 be any sequence of arcs, where k ≥ 1 and
ai = 〈αi, βi〉 (i = 1, 2, . . . , k). S is called a path from α1 to βk if
βi = αi+1 for i = 1, 2, . . . , k − 1. Assume now that S is a path. We
also use the notation 〈α1, α2, . . . , αk, βk〉 to denote S. The length l(S)
of S is defined as l(S) = la1 +

∑k
i=2(lai + wαi), where lai denotes the

weight (or length) of arc ai and wαi
the weight of node αi. Note that

the length of S does not include the weights of the nodes α1 and βk
and that for the job shop problem la = 0 for all arcs a ∈ A. In the next
chapter, we will see some examples with la �= 0. A cycle is a path from
a node α to itself. A graph is acyclic if it contains no cycle. Let now
E′ ⊆ E. A set A′ of arcs is an orientation of E′ if

(α,β) ∈ E′ ⇔ 〈α,β〉 ∈ A′ or 〈β,α〉 ∈ A′.

A complete orientation is an orientation of E; a partial orientation is an
orientation of some E′ � E. An orientation A′ is feasible if the directed
graph DA′ = (V,A ∪A′) is acyclic. An arc 〈vij , vgh〉 in DA′ represents
that operation Oij is processed before operation Ogh. The crux is now
that each feasible complete orientation induces a unique left-justified
schedule for the job shop problem. Also, each left-justified schedule for
the job shop problem uniquely induces a feasible complete orientation.
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The arcs of A′ are called the machine arcs, because they represent the
sequences of the operations on the machines. The length of a longest
path from s to t, that is, a path from s to t which has maximal length,
equals the makespan of the induced schedule. Figure 2.2 displays a
feasible schedule with the sequence O11 − O22 − O33 on machine M1,
the sequence O12 −O23 −O31 on machine M2, and the sequence O13 −
O21 − O32 on machine M3 for the instance for which the data can be
found in Table 2.1. For convenience, we left out the machine arcs that

v32

v31

t

v11 v21

v22s v12

4

3

2 6
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7 6
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7

v33v13 v23

Figure 2.2: Graph representing a solution.

are induced by transitivity ; for example, we left out the arc 〈v11, v33〉,
because machine arcs 〈v11, v22〉 and 〈v22, v33〉 imply that operation O11

is processed before operation O33.

2.3 Solution procedures

Algorithms for optimization problems can be divided in two classes:
exact algorithms and approximation algorithms. Exact algorithms pro-
duce optimal solutions, but their running time cannot be bounded from
above by a polynomial in the size of an instance for NP-hard problems
if P �= NP . Approximation algorithms generally produce solutions in
relatively little computation time, but the solutions need not be opti-
mal. In the next subsection, we discuss exact algorithms for the job
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shop problem. Section 2.3.2 reports on approximation algorithms.

2.3.1 Exact solution procedures

The most straightforward procedure to find an optimal solution is com-
plete enumeration. This approach evaluates all feasible solutions and
stores a best. At the completion of the algorithm, an optimal solution
has been stored. For the job shop problem, this comes down to enumer-
ating each feasible complete orientation and evaluating the length of a
longest path from s to t in the resulting directed graph.

The algorithm in Figure 2.3 enumerates all feasible complete orien-
tations. We assume that E = {e1, e2, . . . , e|E|}, with |E| the number
of elements in E. The two possible orientations of edge ei are denoted
by ai,1 and ai,2, respectively. We denote the length of a longest path
from s to t in the graph DAi

by l(Ai). During the execution of the
algorithm, Ai is an orientation, SP a set of orientations that need to
be examined, and ub the best solution value found so far. In the first
three steps, the algorithm initializes these variables. The other steps
constitute the main loop of the algorithm. The algorithm stops when
all feasible orientations have been examined, i.e., when SP = ∅. After
choosing an orientation Ai ∈ SP, it checks whether Ai is a feasible
orientation, that is, whether DAi

is acyclic. If Ai is feasible, then the
algorithm also checks whether Ai is a complete orientation and, if so,
whether Ai is better than the best solution found so far. If Ai was not a
complete orientation, then a non-oriented edge ej is chosen and the two
orientations A2i+1 and A2i+2 are added to SP. A2i+1 is orientation Ai

plus the first orientation aj,1 of ej . In the same way, A2i+2 is Ai plus the
second orientation aj,2 of ej . The process of creating the orientations
A2i+1 and A2i+2 from Ai can be visualized in a graph. Each set Ai has a
node i in this graph; there are edges between Ai and A2i+1 and between
Ai and A2i+2, indicating that A2i+1 and A2i+2 are created from Ai by
adding one arc to Ai. If the feasibility check applies only to complete
orientations, then we would obtain the graph in Figure 2.4, which is
called the search tree. The complete enumeration algorithm needs
an algorithm to determine whether the graph DAi

contains a cycle and
the length of a longest path from s to t if Ai is a feasible complete
orientation. The algorithm in Figure 2.5 does both. We assume that
V = {v0 = s, v1, v2, . . . , vN , vN+1 = t}. During the execution of the
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Algorithm 2.1

Enumeration of all feasible complete orientations.

1. A0 ← ∅;
2. SP ← {A0};
3. ub ← ∞;

4. WHILE SP �= ∅ DO

5. BEGIN

6. choose Ai ∈ SP;

7. SP ← SP \ {Ai};
8. IF DAi

is acyclic THEN

9. BEGIN

10. IF Ai is a complete orientation THEN

11. IF l(Ai) < ub THEN ub ← l(Ai);

12. ELSE

13. BEGIN

14. choose non-oriented edge ej;

15. A2i+1 ← Ai ∪ {aj,1};
16. A2i+2 ← Ai ∪ {aj,2};
17. SP ← SP ∪ {A2i+1, A2i+2};
18. END

19. END

20. END

Figure 2.3: Algorithm for enumerating all feasible complete orienta-
tions.

algorithm, a node vj is labeled when the length of a longest path from s
to vj has been computed. We say that a node vj has been considered if
vj has been chosen in Step 5 of the algorithm. This means that if node
vj has been considered, then its weight and the length of its outgoing
arcs 〈vj , vk〉 ∈ A ∪Ai are taken into account for computing the length
of longest paths to the other nodes. Also, we then say that the arcs
〈vj , vk〉 ∈ A ∪ Ai have been considered. We denote the set of labeled
nodes that have not yet been considered by NC. The algorithm initial-
izes by labeling s and settingNC = {v0}, with v0 = s. The main loop of
the algorithm iterates until NC = ∅, i.e., until there are no more nodes
that are labeled but not considered. After choosing a node vj ∈ NC, we
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Figure 2.4: Search tree.

update the longest paths from s to nodes vk for which 〈vj , vk〉 ∈ A∪Ai.
If all nodes vl with 〈vl, vk〉 are labeled and considered, then we label vk
and add it to NC, because now the length of a longest path from s to
vk has been definitively computed.

Theorem 2.1 The graph DAi
is acyclic if and only if the algorithm in

Figure 2.5 ends with node t labeled.

Proof. (⇒) : Suppose that t is not labeled. Let C denote the set of
unlabeled nodes, that is vk ∈ C if vk has an ingoing arc that has not
been considered. Let 〈vj , vk〉 be such an arc. Then also vj ∈ C, because
otherwise we would have considered 〈vj , vk〉. Since each vk ∈ C has at
least one ingoing arc 〈vj , vk〉 that has not been considered, the number
of arcs that have not been considered is at least |C|. Also, if 〈vj , vk〉 is
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Algorithm 2.2

Computing longest paths in DAi
.

1. label v0;

2. NC ← {v0};
3. WHILE NC �= ∅ DO

4. BEGIN

5. choose vj ∈ NC;
6. NC ← NC \ {vj};
7. FOR ∀vk with 〈vj , vk〉 ∈ A ∪Ai DO

8. BEGIN

9. update longest path from s to vk;

10. IF ∀vl with 〈vl, vk〉 ∈ A∪Ai : vl is labeled THEN

11. BEGIN

12. NC ← NC ∪ {vk};
13. label vk;

14. END

15. END

16. END

Figure 2.5: Algorithm for computing longest paths.

an unconsidered arc, then vj ∈ C and vk ∈ C. C must then contain a
cycle.

(⇐) : Suppose that DAi
contains a cycle K = 〈vj1 , vj2 , . . . , vjp , vj1〉.

Then, s /∈ K, because s has no incoming arcs. Initially, all nodes vj �= s
are unlabeled. If the algorithm would label node vj1 , then node vjp must
be labeled. If node vjp is labeled, then also node vjp−1

must be labeled.
If we continue this reasoning, then the algorithm would label vj1 , only
if it has been labeled already. This is a contradiction. Therefore, all
nodes in K are not labeled. Since there exists a path from each node
to t, t cannot be labeled. �

Note that this algorithm computes not only the length of a longest
path from s to t, but also the length of a longest path from s to node
vj (j = 1, 2, . . . ,N). The time complexity of the algorithm is O(|E|).

A serious disadvantage of complete enumeration for job shop sched-
uling is that much computation time is spent on partial orientations
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that will not result in a better solution than the current best. A class
of exact algorithms that tries to avoid this is the class of branch-and-
bound algorithms. In Figure 2.6, a simple branch-and-bound algorithm
is given in which ub denotes an upper bound on the optimal makespan.
Initially, ub can be set to the solution value of any feasible solution.

Algorithm 2.3

Branch-and-bound algorithm

1. ub ← solution value of any feasible solution;

2. SP ← {Ω0};
3. WHILE SP �= ∅ DO

4. BEGIN

5. Choose SP ∈ SP;

6. SP ← SP \ {SP};
7. IF SP is a promising set of solutions THEN

8. BEGIN

9. IF a better solution found THEN

10. ub ← new solution value;

11. partition SP into subsets SP1, SP2, . . . , SPk;

12. SP ← SP ∪ {SP1, SP2, . . . , SPk};
13. END

14. END

Figure 2.6: Branch-and-bound algorithm.

Clearly, the optimal solution value is at most ub. During the execution
of the algorithm, ub is the solution value of the best feasible solution
found so far. A feasible solution can easily be found, for example by
priority rules, which we discuss in the next subsection. Ω0 denotes the
set of all feasible solutions. In the steps of the WHILE loop, a set
SP of feasible solutions is examined. First, we decide whether SP may
contain an optimal solution. A necessary condition for this is that SP is
a non-empty set. Also, a lower bound on the solution values of solutions
in SP is computed. If this lower bound is at least ub, then no solution
in SP has a better solution value than ub. Computing a lower bound
is the bounding part of branch-and-bound algorithms. If we now have
a solution with a solution value smaller than ub, then ub is set to this
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solution value: it is the best solution found so far. The branching part of
the branch-and-bound algorithm is the partitioning of solutions in SP
into subsets of solutions SP1, SP2, . . . , SPk. Of course, we only do this
if SP contains more than one solution and if it may contain an optimal
solution. Otherwise, it is fathomed : we do not examine solutions in SP
any more.

There are some important implementation aspects of the branch-
and-bound algorithm in Figure 2.6, including the effort to be spent on
computing upper and lower bounds. We can say that the more time
spent on computing bounds, the more nodes can be fathomed, and
hence the fewer sets of solutions are examined. There is a trade-off
involved, however: if the computation of bounds takes a lot of time,
then the overall computation time might be larger. Another important
aspect is the branching strategy, i.e., the strategy to choose the set of
solutions to be examined next. If we make a good choice, then early in
the execution of the algorithm we may find a better upper bound ub,
which also may help to restrict the growth of the tree.

Let us now discuss a possible implementation of the branch-and-
bound algorithm for the job shop problem. Let Ω0 denote the set of all
feasible complete orientations. We branch from this set by orienting e1:
Ω1 is the set of all feasible complete orientations where e1 is oriented as
a1,1, i.e., Ω1 = {Ā ∈ Ω0 | Ā ⊃ {a1,1}}, and Ω2 = {Ā ∈ Ω0 | Ā ⊃ {a1,2}}.
Then, Ω0 = Ω1 ∪Ω2. In the same way, we branch from Ω1 by orienting
e2. We then get the sets Ω3 and Ω4, where Ω3 = {Ā ∈ Ω1 | Ā ⊃
{a2,1}} and Ω4 = {Ā ∈ Ω1 | Ā ⊃ {a2,2}}. Then, Ω1 = Ω3 ∪ Ω4.
This process continues until we get the sets Ω2|E|−1,Ω2|E| , . . . ,Ω2|E|+1−2;
each of these sets contains one complete orientation. Note that not all
complete orientations are feasible; therefore, Ωi might be an empty
set. Note also that this process is the same as we discussed earlier for
complete enumeration. The nodes 2i + 1 and 2i+ 2 in the search tree
are called immediate child nodes of node i; node i is the parent node of
2i+1 and 2i+2. A node j is called a child node of node i, if we obtain
node j by branching one or more times from node i. Node 0 is called
the root of the search tree which is also called the branch-and-bound
tree.

Complete enumeration algorithms fathom a node i only if Ωi is
empty. In the branch-and-bound algorithm, we also compute a lower
bound on the makespan for solutions in Ωi. If the lower bound is large
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enough, that is, if the lower bound is at least ub, then we stop exam-
ining this node and all of its childs. Moreover, most branch-and-bound
algorithms use dominance criteria that specify conditions to conclude
that a set Ωi of solutions does not contain a better solution than the
best one in Ωj for some i and j. The node that corresponds to Ωi can
then be fathomed.

Carlier and Pinson [19] were the first to solve the famous 10 × 10
instance proposed by Fisher and Thompson [27]. Let Ai be the set of
oriented edges that is considered in node i of the branch-and-bound tree.
Carlier and Pinson use the well-known lower bound that is found by
solving for each machine in the job shop an instance of 1|rj , pmtn|Lmax

in which the release and due dates for the operations follow from longest
path computations in the graph DAi

. They branch from each node
by orienting one of the edges. If possible, an edge is chosen between
operations on the machine that had the largest lower bound in the root
of the branch-and-bound tree. Carlier and Pinson derive conditions
that ensure that in any optimal complete orientation Ā with Ā ⊃ Ai

some edges have a fixed orientation. If this is the case for some edge e,
then we do not need to branch on this edge. Instead, we add the fixed
orientation of e to Ai. The sequence in which they examine the nodes
of the branch-and-bound tree is the sequence in which the associated
subproblems are created.

Applegate and Cook [4] use the same branching scheme and lower
bounds as Carlier and Pinson. Let Ai again be the set of oriented edges
that is considered in node i. They restrict their attention to edges to
branch on to edges between operations on the machine that had the
worst lower bound in the root of the branch-and-bound tree, until that
machine is completely scheduled; after that, they consider the other
edges. Suppose that we may branch on edge ek, which results in the
sets Ai ∪ {ak,1} and Ai ∪ {ak,2}. The edge ek that we may branch
on and for which min{lb(Ai ∪ {ak,1}), lb(Ai ∪ {ak,2})} is maximum is
chosen to branch on, where lb(Ai) is a lower bound for solutions Ā with
Ā ⊃ Ai. The next subproblem they examine is the one that has the
smallest lower bound. Applegate and Cook extend the idea of Carlier
and Pinson to fix the orientation of some unoriented edges.

Brucker et al. [13] propose a different branching scheme to solve
the job shop problem. Each node in their branch-and-bound tree cor-
responds to a feasible complete orientation. This branching scheme is
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based on the block approach of Grabowski et al. [36] for a single-machine
scheduling problem with release and due dates. Brucker et al. prove that
if the schedule in a node of the search tree is not optimal, then at least
one operation in a block has to be processed either before the first, or
after the last operation of the corresponding block. Apart from some
simple lower bounds, they use the preemptive single-machine bound.

State-of-the-art branch-and-bound algorithms are able to solve in-
stances with up to 15 jobs and 15 machines. The main problem in
solving larger instances seems to be the lack of good lower bounds.

2.3.2 Approximation algorithms

Since exact algorithms can solve only relatively small instances of the job
shop problem, various approximation algorithms have been proposed.
We discuss two classes of approximation algorithms: priority rules and
local search algorithms.

The algorithm in Figure 2.7 is a generic algorithm for scheduling jobs
in a job shop by a priority rule. In this algorithm, T is a set of comple-
tion times of operations. The sets QMk

are sets of operations available
to be processed on machine Mk , that is, unprocessed operations Oij for
which µij =Mk, while the operations O1j , O2j , . . . ,Oi−1,j have already
been processed. At each completion time on a machine Mk, the next
operation to be processed is chosen by means of a function that assigns
a priority to each available operation. Common functions are earliest
due date, first in-first out, most work remaining, and shortest processing
time. Priority rules require little computation time, are easy to imple-
ment, but in general generate schedules of poor quality. In Chapter 6
where we consider assembly shops with setup times, we will see that
priority rules are significantly outperformed by a more sophisticated
approach. For a survey of priority rule based scheduling, we refer to
Haupt [39].

The second class of approximation algorithms we discuss is the class
of local search algorithms. Local search algorithms usually start with
a feasible solution and try to improve this solution by making small
changes to it, e.g., reversing the sequence of two consecutive operations
or giving a single operation a new position in the schedule. A solution
that we obtain after making one such a change to a solution σ is called
a neighbor of σ. The set of all neigbors of σ is called the neighborhood
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Algorithm 2.4

Priority rule algorithm for scheduling jobs in a job shop

1. ∀Mi : QMi
← {O1j | 1 ≤ j ≤ n, µ1j = Mi};

2. N ← total number of operations;

3. T ← {0};
4. WHILE N > 0 DO

5. BEGIN

6. T ← min{t ∈ T };
7. IF at time T an operation Oij finishes on a machine THEN

8. IF Oij is not the last operation of job Jj THEN

9. Qµi+1,j
← Qµi+1,j

∪ {Oi+1,j};
10. IF at time T a machine Mk is available with operations waiting

11. THEN

12. BEGIN

13. Choose operation Ogh from QMk
with highest priority;

14. Schedule Ogh in the interval [T,T + pgh];

15. T ← T ∪ {T + pgh};
16. QMk

← QMk
\ {Ogh};

17. N ← N − 1;

18. END

19. ELSE T ← T \ {T};
20. END

Figure 2.7: Priority rule algorithm for the job shop problem.

of σ. The simplest local search algorithm is iterative improvement that
starts with a feasible solution and searches the neighborhood of this
solution for a better one. If a better solution is found, then the neigh-
borhood of this solution is searched for a better solution. This process
continues until we have a solution that is better than all its neighbors.
Such a solution is a local optimum. Local optima found with iterative
improvement are often poor quality solutions. An approach to resolve
this situation may be to run the same algorithm more than once, each
time with a different starting solution.

Another type of local search algorithm is taboo search. The idea is
to avoid bad local optima by moving to a worse solution if no better
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exists in the neighborhood of the current solution. To avoid jumping
from one solution to the other and back again, a taboo list is introduced.
We cannot move to a solution on the taboo list, unless some aspiration
criterion is satisfied. After each move the taboo list is updated. A
typical taboo list consists of the seven last changes made. The criterion
to stop the algorithm is often an upper bound on the running-time or on
the number of iterations without improvement. For details, we refer to
Glover [32, 33] and Glover et al. [34]. For applications of taboo search to
job shop problems, see, e.g., Dell’Amico and Trubian [24] and Nowicki
and Smutnicki [60].

Simulated annealing is a local search algorithm that randomly picks
a neighbor of the current solution. If the neighbor is a better solution
than the current one, then this neighbor becomes the current solution.
Otherwise, it becomes the current solution with a certain probability.
This probability depends on the difference between the value of the
current solution and the value of the neighbor, and on a certain control
parameter, often called the temperature, whose value decreases during
the execution of the algorithm. A low temperature makes it unlikely
that we move to a neighbor with a worse solution value. For applications
of simulated annealing to job shop problems, see, for instance, Van
Laarhoven et al. [49] and Aarts et al. [1].

We refer to Vaessens et al. [79] for a computational study of the per-
formance of the most prominent local search algorithms for the job shop
problem. They discuss a number of other local search algorithms, such
as genetic algorithms, variable-depth search, and a number of variants
of the Shifting Bottleneck procedure of Adams et al. [2]. The strength
of the SB procedure is that it is an intuitive algorithm that generates
good schedules in reasonable time. Also, it can easily be generalized to
deal with practical features, such as transportation and non-availability
times of the machines. The next section discusses the original Shifting
Bottleneck procedure.

2.4 Shifting Bottleneck procedure

The Shifting Bottleneck (SB) procedure decomposes the job shop prob-
lem into a series of single-machine subproblems. It schedules the ma-
chines one by one and focuses on bottleneck machines. Like branch-and-
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bound algorithms for the job shop problem, the SB procedure heavily
relies on longest path computations in the graph DA′ discussed in Sec-
tion 2.2:

• the length of a longest path from node s to node vij defines the
earliest possible starting time of operation Oij , that is, it defines
a release date rij for operation Oij ;

• the length of a longest path from node vij to node t equals the
minimum time the shop needs to process all jobs after the com-
pletion of operation Oij , that is, it defines a run-out time qij for
operation Oij ;

• if all machines are scheduled, then the length of a longest path
from s to t equals the makespan of this schedule.

In Figure 2.8, a description of the SB procedure is given. The initial-

Algorithm 2.5

Shifting Bottleneck procedure.

1. label every machine as a non-bottleneck machine;

2. FOR i = 1 TO M DO

3. BEGIN

4. compute longest paths, resulting in release dates and run-out times;

5. schedule the non-bottleneck machines;

6. let Mk be the machine with the largest resulting makespan;

7. label Mk as a bottleneck machine;

8. fix schedule of Mk;

9. optimize bottleneck machines;

10. END

Figure 2.8: Shifting Bottleneck procedure.

ization of the procedure is to label every machine as a non-bottleneck
machine. During each iteration of the main loop, one new bottleneck
machine is chosen.

First, the longest paths are computed in the directed graph DA′ ,
where A′ consists of the machine arcs representing the schedules on the
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bottleneck machines. We slightly modify the definition of A′: until now,
we represented the schedule Ogh − Oij − Okl on a machine by the arc
set {〈vgh, vij〉, 〈vgh, vkl〉, 〈vij , vkl〉}; now, we represent it by the arc set
{〈vgh, vij〉, 〈vij , vkl〉}. The arc 〈vgh, vkl〉 is induced by transitivity. In
this way, each node vij has outdegree at most two, i.e., there are at
most two arcs that start in vij . Therefore, there are O(N) arcs in DA′ ,
and the longest path algorithm in Figure 2.5 runs then in O(N) time.
The longest path computations result in release dates and run-out times
for all operations.

Next, all non-bottleneck machines are scheduled. A number of
1|rj , qj |Cmax-problems need then to be solved. This problem is NP-
hard, but it can be solved effectively with the algorithm proposed by
Carlier [17]. Adams et al. use this optimization algorithm to solve these
single-machine scheduling problems. Note that if we give each opera-
tion Oij a due date dij = −qij , then each problem is equivalent to the
1|rj |Lmax problem. The machine with the largest resulting makespan,
or maximum lateness, becomes the new bottleneck machine. The sched-
ule of this machine is fixed by adding the machine arcs representing it
to A′.

The bottleneck machines are rescheduled in a bottleneck optimiza-
tion procedure, which consists of a number of cycles. In each cycle,
every bottleneck machine is rescheduled once. In the first cycle, the se-
quence in which the bottleneck machines are rescheduled is the sequence
in which they were labeled as a bottleneck machine. In the other cy-
cles, we use the sequence we get by reordering the bottleneck machines
according to non-increasing solution values of the single-machine prob-
lems in the latest cycle. If a machine is rescheduled, then its machine
arcs are deleted from A′, release and due dates for operations on this
machine are recomputed, the machine is scheduled according to the
current release and due dates, and the machine arcs representing the
new schedule are added to A′. If an improvement was found during a
cycle, then another cycle is performed. If not all machines are bottle-
neck machines, however, then Adams et al. limit the number of cycles
to three. The last step in the bottleneck optimization procedure is to
reschedule successively a number of non-critical bottleneck machines,
that is, bottleneck machines that have no operations on a longest path
from s to t in the graph DA′ . The authors suggest to set the num-
ber of non-critical machines to reschedule equal to the min{

√
M0,M

′
0},
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where M0 is the number of bottleneck machines and M ′
0 the number of

non-critical machines.

2.4.1 An example

In this subsection, we demonstrate the SB procedure by applying it to
an instance with three machines and two jobs, where both jobs consist
of three operations. The data of this instance can be found in Table 2.2.
Figure 2.9 gives the graph G, representing this instance. For conve-

Jj µ1j µ2j µ3j p1j p2j p3j
J1 M1 M2 M3 2 3 1
J2 M1 M3 M2 3 2 3

Table 2.2: Data for example instance.
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Figure 2.9: Graph representing example instance.

nience, we have included the weights in the nodes. The first step in the
SB procedure is to label all machines as non-bottleneck machines. Next,
the length of the longest paths are computed in the graph DA′ , with
A′ = ∅ since all machines are non-bottleneck machines. The graph DA′

is the graph G with all edges removed. The data of the resulting single-
machine problems are denoted in Table 2.3. The data in the columns
‘r’, ‘p’, and ‘d’ represent the release dates, the processing times, and the
due dates of the operations, respectively. The optimal schedules for the
single-machine problems are given underneath the data, together with
the optimal maximum lateness. We see that M1 has the largest result-
ing maximum lateness and we label M1 as a bottleneck machine. Since
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M1 r p d M2 r p d M3 r p d
J1 0 2 -4 J1 2 3 -1 J1 5 1 0
J2 0 3 -5 J2 5 3 0 J2 3 2 -3

σ1 = 〈J2 − J1〉 σ2 = 〈J1 − J2〉 σ3 = 〈J2 − J1〉
Lmax(σ1) = 9 Lmax(σ2) = 8 Lmax(σ3) = 8

Table 2.3: Data of the first single-machine problems.

there is only one machine labeled as a bottleneck machine, we do not
perform the bottleneck optimization step. We fix the schedule onM1 by
adding the machine arc representing this schedule to A′, see Figure 2.10.
The release and due dates are now recomputed, which results in the

3

0

2

12 3

3

0

M1 M3

M2 M3

M2

M1

Figure 2.10: The graph DA′ after fixing the schedule on M1.

single-machine problems found in Table 2.4. Again, the optimal sched-

M2 r p d M3 r p d
J1 5 3 -1 J1 8 1 0
J2 5 3 0 J2 3 2 -3

σ2 = 〈J1 − J2〉 σ3 = 〈J2 − J1〉
Lmax(σ2) = 11 Lmax(σ3) = 9

Table 2.4: Machine data after fixing schedule on M1.

ules for the single-machine problems together with their solution values
are given underneath the data. Now,M2 is the machine with the largest
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resulting maximum lateness, hence it is labeled as a bottleneck machine
and its schedule is fixed, see Figure 2.11. The length of a longest
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Figure 2.11: Graph after fixing the schedule on M2.

path from s to t is now 11. Since we now have two bottleneck machines,
we perform the bottleneck optimization step. In the first cycle, both
machines are rescheduled in the order in which they were labeled as a
bottleneck machine. This means that we first reschedule M1 and then
M2. Releasing the schedule onM1 results in the graph in Figure 2.12.
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Figure 2.12: Graph after releasing the schedule on M1.

The resulting machine data forM1 are given in Table 2.5. The resulting
schedule J1 − J2 on M1 is better than the previous schedule J2 − J1,
because the length of a longest path from s to t is now 10 instead of
11. Therefore, we accept the new schedule on M1. The next step in
the cycle is to release the schedule on machine M2 and reschedule it.
The schedule remains the same, however; the maximum lateness of this
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M1 r p d

J1 0 2 -6
J2 0 3 -5

σ1 = 〈J1 − J2〉
Lmax(σ1) = 10

Table 2.5: Machine data after releasing schedule M1.

schedule is 10. This completes the first cycle of the bottleneck optimiza-
tion step. Since we have found an improvement during the last cycle, we
perform another one. The bottleneck machines are now rescheduled in
order of non-increasing solution values of the single-machine schedules.
The schedules on both M1 andM2 have maximum lateness 10; we may
therefore reschedule them in the sequence M1 −M2 or M2 −M1. In
either case, we find no improvement of the length of a longest path from
s to t. Now, we have to reschedule a number of non-critical bottleneck
machines, but all bottleneck machines are critical. Also, there has been
criticism about this step, because it rarely results in an improvement,
cf. Dauzère-Peres and Lasserre [23]. We have chosen not to use this
second part of the bottleneck optimization step. Figure 2.13 gives the
resulting graph after the bottleneck optimization step. The longest
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Figure 2.13: Graph after first bottleneck optimization step.

path computations now result in the machine data in Table 2.6. M3

is labeled as a bottleneck machine and the resulting schedule on this
machine is fixed. In the bottleneck optimization step, the bottleneck
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M3 r p d

J1 5 1 0
J2 5 2 -3

σ3 = 〈J2 − J1〉
Lmax(σ3) = 10

Table 2.6: Machine data after first bottleneck optimization step.

machines are rescheduled in the sequence M1−M2−M3, but this gives
in no improvement. Hence, this is the end of the SB procedure. The
final solution is represented in Figure 2.14. The makespan of this
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Figure 2.14: Final graph with Cmax = 10.

solution, which is equal to the length of a longest path from s to t, is
10.

2.5 Conclusion

In this chapter, we discussed the job shop shop scheduling problem and
some optimization and approximation algorithms to solve it, including
the SB procedure. In the next chapter, we discuss extensions to this
procedure, such as setup times, simultaneous resource requirements,
and minimization of maximum lateness instead of makespan. Some ex-
tensions involve only changes in the disjunctive graph; other extensions
also require changes in the single-machine scheduling algorithms.
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Chapter 3

Scheduling practical job

shops

3.1 Introduction

In the operations research literature, machine scheduling problems, such
as the job shop problem, are a popular area of research and a high level
of algorithmic design and analysis has been achieved. These problems
are, however, “clean” in that they ignore the nasty side constraints that
occur in practice. In contrast, the production literature addresses such
practical scheduling problems, but the emphasis is mainly on problem
formulation and empirical analysis of priority rules.

This chapter tries to fill the gap between the operations research lit-
erature and the production literature by extending the Shifting Bottle-
neck (SB) procedure of Adams et al. [2] for the job shop problem to deal
with practical features, such as transportation times and convergent job
routings. Such practical features usually prohibit a theoretical analysis
of the problem. For practical applications, computation time is very
important. In general, the SB procedure produces good solutions for
job shop problems in relatively little computation time; cf. Vaessens et
al. [79]. This is why we use the SB procedure, instead of randomized
local search methods like taboo search and simulated annealing that
take more computation time.

The original paper by Adams et al. has prompted quite some re-
search, which has taken two directions. The first concerns algorithmic
improvements of the procedure; see, for instance, Dauzère-Peres and
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Lasserre [23], Balas et al. [8], and Balas and Vazacopoulos [9]. The
second direction concerns the adjustment of the SB procedure to other
environments, e.g., job shops with practical features such as simultane-
ous resource requirements and setup times. We call job shops with such
features practical job shops . Ovacik and Uzsoy [61] use an adapted SB
procedure for scheduling semiconductor testing facilities. Their compu-
tational experiments with real-life data show that this procedure signif-
icantly outperforms dispatching rules both in terms of solution quality
and robustness. Ivens and Lambrecht [43] discuss some practical exten-
sions of the SB procedure, such as release and due dates, setup times,
and convergent job routings.

In this chapter, we report on our research in the area of extending
the SB procedure with practical features. This chapter is partly based
on the work by Meester [56], who focuses on simultaneous resource
requirements, and by Schutten [73]. The SB procedure with extensions
is part of a commercial shop floor control system called J��������,
which we will discuss in Chapter 7.

The SB procedure consists of some generic steps, such as the com-
putation of longest paths in the graph DA′ . Apart from the condition
that DA′ may not contain directed cycles, we have imposed no restric-
tions on it. The decomposition of a job shop scheduling problem as
discussed in the previous chapter results in the single-machine schedul-
ing subproblems 1|rj |Lmax. We show that by changing the properties
of the graph G, and therefore of DA′ , and by changing the algorithms
for the machine scheduling subproblems, we are able to handle various
extensions of the classical job shop problem.

Practical instances may be very large and the machine scheduling
subproblems can then often not be solved to optimality in reasonable
time. In the SB procedure, it is possible to use heuristics for the ma-
chine scheduling subproblems. For example, we can use the extended
Jackson [44] rule instead of Carlier’s algorithm for the 1|rj |Lmax prob-
lem. Below, we discuss possible extensions of the classical job shop
problem and how to model them. Although all possible combinations
of those extensions are allowed, we only consider one extension at a
time. We stress that the decomposition principle proceeds along the
lines Adams et al. proposed; we adjust only G and characterize the
resulting machine scheduling subproblems.
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3.2 Release and due dates

In the classical job shop problem, all jobs become available for process-
ing at the same time. This is seldom true in practice, where jobs usually
have different release dates. Suppose now that job Jj has a release date
rj . If we give the arc 〈s, v1j〉 weight rj , then the length of a longest
path from s to v1j is at least rj . Thus, we ensure that r1j ≥ rj and
that operation O1j does not start before time rj . Also, it is possi-
ble that we cannot process operation Oij before some point in time tij
(i = 2, . . . , nj), because some tool or material is not available before
that time, with tij > rj +

∑i−1
k=1 pkj . We model this by adding an arc

from s to vij with weight tij .
In the classical job shop problem, the objective is to minimize make-

span. In practice, jobs for different customers have different due dates.
It is then appropriate to have an objective function that measures the
due date performance. Let dj denote the due date of job Jj . Consider
now the objective of minimizing maximum lateness Lmax, with Lmax =
maxj=1,...,n{Cj − dj} and Cj the completion time of Jj . To cope with
the objective of minimizing Lmax, we give the arcs 〈vnj ,j , t〉 weight −dj
(j = 1, . . . , n). The length of a longest path from s to t is then equal
to the maximum lateness of the corresponding schedule. Note that this
objective generalizes minimizing makespan.

Thus, to deal with release and due dates, we need to change only
the weights of some arcs in the graph G. If also the operations have
release dates, then we must add some arcs to G.

3.3 Setup times

A machine may have to be set up before it can process the next oper-
ation. This happens, for instance, when tools must be switched off-line
or when the machine must be cleaned between two operations. During
a setup, the machine cannot process any operation.

Suppose that a partial schedule on the machine with setup times
is Ogh − Oij . The setup time between Ogh and Oij is sgh,ij . In DA′ ,
we model this setup time by giving weight sgh,ij to the machine arc
〈vgh, vij〉. The length of a longest path from vgh to vij in DA′ is then at
least sgh,ij . This ensures that there are at least sgh,ij time units between
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the completion of Ogh and the start of Oij , which leaves room for the
needed setup.

In the standard SB procedure, we need to solve the single-machine
problem 1|rj |Lmax a number of times. Now, the setup times between
the execution of the operations need to be taken into account, i.e., we
have to solve the 1|rj , sij |Lmax problem. For single-machine scheduling
problems with family setup times, i.e., for the 1|rj , si|Lmax problem,
Schutten et al. [75] present a branch-and-bound algorithm that solves
instances with up to 40 jobs to optimality. For details of this algorithm,
we refer to Chapter 4.

Accordingly, the SB procedure can deal with setup times by chang-
ing the length of the machine arcs inDA′ , and by designing an algorithm
for the machine scheduling subproblems with setup times.

In the Sheet Metal Factory of DAF trucks in Eindhoven (The Neth-
erlands), setup times occur when changing the moulds of the presses.
Belderok [10] tests the SB procedure with setup times in this factory.
His computational experiments indicate that a significant leadtime re-
duction along with a better due date performance is possible, in par-
ticular for the Sheet Metal Press department. For example, Belderok
tests the procedure on a real-life set of jobs that were processed in five
days. The makespan of the schedule generated by the SB procedure is
less than three and a half days.

3.4 Parallel machines

In the classical job shop, every operation requires a specific machine.
In practice, an operation may sometimes be performed by any machine
from a group of parallel machines. Parallel-machine scheduling comes
down to assigning each operation to one of the machines and sequencing
the operations assigned to the same machine.

The decomposition of the job shop scheduling problem with parallel
machines results in a series of parallel-machine scheduling problems in
which the jobs have release and due dates and the objective is again
to minimize the maximum lateness. If the machines in a group are
identical, then we may use Carlier’s [18] algorithm to solve the resulting
subproblems P |rj |Lmax to optimality.

If the machines in the group are not identical, that is, if the process-
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ing time of an operation depends on the machine, then the weight of the
corresponding node changes during the execution of the SB procedure.
If a parallel machine group is labeled as a bottleneck, then the weight
of the corresponding node is equal to the processing time on the ma-
chine to which the operation has been assigned. Otherwise, the weight
is equal to the smallest processing time of this operation.

In G, we have for each machine in this group a chain of arcs rep-
resenting the sequence on this machine. In Figure 3.1, the bold arcs
represent the schedule for a group consisting of two parallel machines
with O12 −O21 the schedule on the first machine and O14 −O23 −O25

the schedule on the second machine in this group.
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Figure 3.1: Representation of a parallel machine schedule.

3.5 Transportation times

In practice, it may be impossible to start operation Oij immediately
after the completion of operation Oi−1,j , because the product must first
be transported from machine µi−1,j to machine µij . If the transporta-
tion capacity is unlimited, i.e., the transportation of a product always
starts immediately after the completion of the operation, then we model
this by giving arc 〈vi−1,j , vij〉 a weight that is equal to the transporta-
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tion time. This creates enough time between the completion of Oi−1,j

and the start of Oij to transport the product to the next machine. Note
that we need not change any algorithm for the machine scheduling sub-
problems to deal with this type of transportation time.

Reesink [66] tests the SB procedure with transportation times at
Stork Plastics Machinery in Hengelo, The Netherlands. He also uses
transportation times to model operations that are subcontracted. These
operations are assumed to have a fixed leadtime. Belderok [10] uses
transportation times to make the resulting schedule more robust . A
schedule is robust if a small increase in the processing time of an op-
eration does not create the need to reschedule. Frequent rescheduling
may lead to nervousness on the shop floor, if the operators have to deal
with frequently changing schedules.

If transportation capacity is limited, then transportation is an op-
eration that we need to schedule as well; it is then uncertain when
transportation takes place and, accordingly, when the next operation
can start. We model, for example, transportation performed by vehi-
cles that can transport no more than one job at a time as a parallel
machine group with setup times. Each vehicle is seen as a machine
in this group, with the number of machines in this group equal to the
number of transportation vehicles. Figure 3.2 shows the representation
of an instance with two transportation operations and one vehicle. The
nodes corresponding to the transportation operations are indicated by
squares instead of circles. The figure represents the schedule O21−O32
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Figure 3.2: Schedule of transportation vehicle.

for the transportation vehicle. This means that the vehicle must pick
up job J1 at machine µ11 and transport it to machine µ31. This trans-
portation takes 7 time units; after this, the vehicle must pick up J2 from
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machine µ22. Since the vehicle can only transport one job at a time, it
travels empty from µ31 to µ22. We see this empty travel time for the
vehicle as a setup time, and model it accordingly. An open question is
how to adjust the SB procedure to deal with congestion and blocking
of vehicles.

3.6 Unequal transfer and production batches

A job may represent an order to produce a batch of b identical products,
not just a single product. An operation Oij of this job is then actually a
series of b identical operations: Oij = (Oi,1,j ,Oi,2,j , . . . , Oi,b,j). If the b
identical products need to be processed contiguously on each machine,
then Oij is called a production batch. We assume that a production
batch needs to be processed continuously, i.e., without idle time, on the
machines. Suppose now that we may transport Oi,k,j (k = 1, . . . , b− 1)
to the next machine immediately after its completion. If we do this,
then it may result in a smaller completion time on the next machine
for the production batch. We call Oi,k,j a transfer batch. For problems
with pij > pi+1,j , we shift the batches on machine µi+1,j to the right,
such that no idle time between the batches on this machine exists; see
Figure 3.3 for an example with b = 4. Note that the difference in time

Oi,2,jOi,1,j

Oi+1,3,j

Oi,3,j Oi,4,j

Oi+1,2,jOi+1,1,j Oi+1,4,j

Time 3 pi+1,j / 4

Figure 3.3: Transfer batches with pij > pi+1,j and b = 4.

between the completion of Oij and the start of Oi+1,j is at least −b−1
b
·

pi+1,j time units. For problems with pij ≤ pi+1,j , the transfer batches
may immediately be processed on the next machine after transporting
it; see Figure 3.4. The difference between the start of Oi+1,j and the
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Oi+1,3,jOi+1,2,j

Oi,4,jOi,2,j

Oi+1,1,j

Oi,3,j

Oi+1,4,j

Oi,1,j

Time 3 pij / 4

Figure 3.4: Transfer batches with pij ≤ pi+1,j and b = 4.

completion of Oij is now at least −b−1
b
·pij time units. The SB procedure

can therefore deal with unequal transfer and production batches if we
give arc 〈vij , vi+1,j〉 weight − b−1

b
·min{pij , pi+1,j}.

3.7 Multiple resources

An operation may need more than one resource simultaneously for its
processing. Besides a machine, an operation may need a pallet on which
it must be fixed, certain tools, or an operator at the machine. We model
this by adding disjunctive edges to G that connect all operations that
need the same resource. In Figure 3.5, operations O31, O32, and O33

need, besides the machines, the same additional resource. In the SB
procedure, we orient those edges such that they represent the schedules
on the additional resources. We distinguish two approaches to deal with
multiple resources.

1. The centralized approach. In this approach, we treat every re-
source as a machine that needs to be scheduled. We do not dif-
ferentiate between machines and other resources. Consequently,
every resource becomes a bottleneck machine in the SB procedure.
This approach is useful when the number of additional resources
is limited. The modeling of this approach affects G only, not the
machine scheduling subproblems. The interaction of the different
resources is handled by the SB procedure; this is why we call this
approach the centralized approach.
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Figure 3.5: Graph with multi-resource aspects.

2. The decentralized approach. If the number of additional resources
is large, then the centralized approach may be time-consuming,
since we need to label each resource as a bottleneck machine.
Sometimes, however, a group of resources may hardly be restric-
tive. This may be true for the cutting tools in a Flexible Manufac-
turing Cell (FMC). Usually, an FMC consists of a parallel machine
group and a large set of unique tools that can only be used by the
machines of the FMC. If an FMC is part of the job shop, then the
decentralized approach needs an algorithm to schedule the FMC,
that is, we need an algorithm for the parallel-machine problem
of minimizing the maximum lateness, subject to release dates and
tooling restrictions. The interaction of the tools and the machines
in the FMC is handled by the algorithm for scheduling the FMC,
not the SB procedure. This is why we call it the decentralized
approach.

Meester and Zijm [57] present a hierarchical algorithm to sched-
ule an FMC. They compare the performance of the algorithm with
lower bounds obtained by relaxing the multi-resource constraints.
As in the job shop scheduling problem, the gap between the lower
and upper bounds is quite large. The authors feel that this is
due to the weakness of the lower bounds. In contrast to the cen-
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tralized approach, this approach affects both G and the machine
scheduling subproblems.

Meester [56] tests both approaches on real-life instances. In one
case, he tests the centralized approach in the machine shop of Ergon
B.V. in Apeldoorn (The Netherlands), where each operation needs also
an operator during processing. In another case, Meester tests the decen-
tralized approach in the machine shop of El-o-Matic B.V. in Hengelo
(The Netherlands). This machine shop consists of conventional and
Computer Numerically Controlled (CNC) machines, among which one
FMC with a large number of unique tools. Compared with the planning
procedure used by the companies, the SB procedure shows a significant
improvement of the due date performance in both cases.

Note that the outdegree of the nodes vij is not bounded by two any
more. This means that the longest path computations in the graph DA′

take O(N2) time, instead of O(N), because there are now O(N2) arcs
in DA′ . If, however, the outdegree of the nodes vij is bounded by k, e.g.,
the number of additional tools required for each operation is bounded
by k − 2, then the longest path computations take O(kN) time.

3.8 Down times

The machines in a shop may have different availability times: some
machines work 24 hours a day, other machines only work 8 hours a day.
Also, machines might be unavailable due to scheduled maintenance. We
call a period in which a machine is not available for processing a down
time. We distinguish two types of down times: preemptive and non-
preemptive down times. We call a down time preemptive, if an operation
may start before and finish after it. A weekend, for example, is often
a preemptive down time: it is often allowed that an operation starts
before and finishes after a weekend, while no processing is performed
during the weekend. We model preemptive down times by increasing the
weight of a node with the length of the down time if the corresponding
operation straddles the down time. We also need an algorithm that
schedules a machine with preemptive down times. The objective is to
minimize makespan and the operations have release dates and run-out
times. Reesink [66] shows that Carlier’s algorithm (see [17]) can easily
be extended to solve this problem, see Appendix A.
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If each operation needs to be completely processed either before,
or after a down time, then this down time is called a non-preemptive
down time. Maintenance, for example, is usually a non-preemptive
down time: during maintenance, no job is allowed to be on the machine.
The non-preemptive down times are modeled as operations that need to
be processed in a prespecified interval. For each non-preemptive down
time, we therefore add a node to G.

If the machines in a shop have non-preemptive down times, then
the decomposition of the job shop problem results in subproblems in
which the machines have down times. Westra [81] and Woerlee [85]
propose algorithms to solve this machine scheduling subproblem. Either
algorithm sees a down time as an operation Oij with a release date rij
equal to the start of the down time, a processing time pij equal to the
length of the down time, and a due date dij = rij + pij − Q, with Q
an appropriate constant. Let Lmax(Q) denote the optimal value of the
resulting problem; Carlier’s algorithm (see [17]) can be used to find this
value. Clearly, we have that Lmax(Q) ≥ rij+pij−dij = Q and Lmax(Q)
is monotonically non-decreasing in Q. Westra and Woerlee show that
if Lmax(Q) = Q, then Lmax(Q) ≥ L∗

max, with L
∗
max the optimal solution

value of the problem in which each operation associated with a down
time must start at its release date. If Lmax(Q) > Q, then Lmax(Q) <
L∗
max. The problem is then to find the smallest Q such that Lmax(Q) =
Q. This can be done by binary search.

A complication with the modeling of both preemptive and non-
preemptive down times is the following: suppose that Mi is a machine
with preemptive down times and thatMi is the first bottleneck machine.
Eventually,Mj (j �= i) will also be labeled as a bottleneck machine. The
schedule of Mj is then fixed by adding the machine arcs representing
this schedule to G, which may delay operations on Mi. It is then pos-
sible that an operation that straddled a down time can start now only
after the down time. So, the weight of the corresponding node should
no longer be increased with the length of the down time. To resolve this
problem, we propose an ‘intelligent’ longest path procedure: when the
length of a longest path to a node is computed, the procedure checks the
down times of the machines and determines whether the weight of this
node should be increased. A similar problem occurs for machines with
non-preemptive down times. In this case, our longest path procedure
checks whether an operation Oij can be processed entirely before the
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next down time. If not, the procedure inserts an operation representing
the down time just before Oij .

3.9 Convergent and divergent job routings

In the job shop problem, each job is a chain of operations. In practice,
job routings may be convergent or divergent. A convergent job rout-
ing occurs when some components are assembled. Figure 3.6 shows a
representation of an instance with a convergent job routing. An ex-
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Figure 3.6: Instance in which J1 has a convergent job routing.

ample of a divergent job routing is the routing of a metal sheet. Before
cutting, the sheet needs some operations such as cleaning and surface
treatments. After cutting, the different parts of the sheet have their
own routings through the shop. We model this by allowing the nodes in
G to have more than one ingoing and outgoing job arc. Note that this
modeling of convergent and divergent job routings only influences the
properties of G, not the machine scheduling subproblems. In Chapter 6,
we compare the SB procedure with priority rules on the due date per-
formance of an assembly shop. The effect of setup times and the arrival
process is studied in this shop. Also, the effect of dynamic schedul-
ing instead of static scheduling is studied. Test results show that the
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SB procedure outperforms priority rules on the due date performance
indicators maximum lateness and mean tardiness. The priority rules
perform better for the performance indicator ‘number of late jobs’.

3.10 Open shops

In the classical job shop, the sequence in which the operations of a job
must be processed is given. In open shop problems, it is not: the op-
erations can be performed in any order, although the operations of the
same job cannot be processed simultaneously. We model this by intro-
ducing for each job a single, artificial machine on which the operations
of this job must be processed. The schedule on the artificial machine
dictates the sequence in which the operations of the corresponding job
are processed. Each operation needs two resources: the artificial ma-
chine and the machine on which the actual processing takes place. Also,
we need arcs 〈s, vij〉 (j = 1, . . . , n; i = 1, . . . , nj) to ensure a path from
s to every other node. Analogously, we need an arc 〈vij , t〉 to ensure a
path from node vij to t. Figure 3.7 shows the disjunctive graph model
of an open shop problem with n = m = 2, the data of which are found
in Table 3.1. The solid edges in the figure indicate that O11 and O12

Jj µ1j µ2j p1j p2j
J1 1 2 7 9
J2 1 2 3 5

Table 3.1: Open shop problem.

as well as O21 and O22 need to be processed on the same machine, and
therefore cannot be processed simultaneously. O11 and O21 as well as
O12 and O22 also cannot be processed simultaneously, because they are
operations of the same job. This is indicated by the non-solid edges.

3.11 Improvements of the SB procedure

Recently, some algorithmic improvements of the SB procedure have been
proposed. In this section, we discuss three improvements reported in
the literature.
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Figure 3.7: Representation of the instance of the open shop problem.

In the original SB procedure, the operations on amachine are treated
independently. This may lead to infeasibilities. Figure 3.8 is the graph
that we obtain after fixing schedule O13−O32−O21 on machine M3 for
the instance of given in Table 2.1 in Section 2.2. O12 and O31 need to
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Figure 3.8: Graph with delayed precedence constraint.

be processed on machineM2. If we want to schedule this machine, then
we must schedule O12 before O31, because otherwise a directed cycle
would occur in the graph and the resulting schedule would be infeasible.
What is more, after the completion of O12, we must first process O22,
O32, and O21, respectively, before we can start the processing of O31. So,
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there must be a gap of at least p22+p32+p21 time units between the com-
pletion of O12 and the start of O31. A precedence relation between two
operations with the additional constraint that there is a certain delay
between these two operations is called a delayed precedence constraint.
Dauzère-Peres and Lasserre [23] were the first to incorporate delayed
precedence constraints in the SB procedure. As a result, they ensure a
monotonic decrease of the makespan in the bottleneck reoptimization
step. They use approximation algorithms to solve the machine schedul-
ing subproblems where the operations have release dates, run-out times,
and delayed precedence constraints. Test results show that the quality
of the schedules generated by this modified SB procedure is generally
better than those generated by the standard SB procedure. If we want
to incorporate delayed precedence constraints in the SB procedure with
extensions, then each algorithm for the machine scheduling subproblems
should be adapted to deal with these constraints. The computation of
the delayed precedence constraints, however, takes O(N2) time, which
may be too much for practical instances. A solution may then be to re-
move directed cycles from DA′ by reversing the orientation of a machine
arc in a cycle.

Balas et al. [8] propose an algorithm that solves the single-machine
problems with delayed precedence constraints to optimality. The al-
gorithm solves large instances that are randomly generated similar as
Carlier [17] did. Balas et al. use this algorithm in the SB procedure
with a modified bottleneck reoptimization step. Test results show that
this variant of the SB procedure finds consistently better results than
the standard SB procedure, at the expense of a considerable increase of
computation time.

In the standard SB procedure, the bottleneck reoptimization step
consists of rescheduling the bottleneck machines one by one. Balas and
Vazacopoulos [9] propose to reoptimize partial schedules by applying a
variable-depth search algorithm. This algorithm takes about the same
computation time as the algorithm of Balas et al. [8] but performs bet-
ter; cf. Vaessens et al. [79].
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3.12 Conclusions

This chapter discussed extensions of the SB procedure to deal with
practical features, such as setup times. To handle setup times within
the SB procedure, we need an algorithm that takes the setup times into
account. In the next chapter, we discuss a branch-and-bound algorithm
for the problem 1|rj , si|Lmax in detail. This algorithm is capable of
solving instances with up to 40 jobs in reasonable time.
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Chapter 4

Single-machine scheduling

with family setup times

4.1 Introduction

In production environments, such as a part manufacturing shop, the
combined goal of efficient and effective production may lead to com-
plex control problems. Efficient production in such an environment is
achieved by minimizing the loss of capacity due to setups and thus by
combining jobs with similar setup characteristics. Effective production
in an order-driven environment is achieved by completing jobs before
their due dates, or at least by minimizing the lateness. Clearly, these
two objectives may be conflicting: clustering jobs with similar setup
characteristics may lead to the lateness of others. Any solution to these
problems should therefore be based on a combination of batching and
sequencing considerations. These problems are often dealt with hier-
archically. On a higher level, batch sizes (or run lengths) of jobs of
the same or similar nature are determined; sequencing these batches is
then a lower level, short term decision. Maintaining this hierarchical
approach under the current market conditions with increasing product
diversity and decreasing product life cycles, however, may lead to unac-
ceptable results, including a poor delivery performance and/or obsolete
stocks. This creates the need to cluster jobs dynamically, depending on
the workload.

This chapter addresses the combined setup/due date problem in a
relatively simple but, in our experience, highly relevant setting. We
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consider the following problem, in which a set J of n independent jobs
J1, . . . , Jn need to be processed on a single machine. Each Jj (j =
1, . . . , n) becomes available for processing at its release date rj , needs
uninterrupted processing during a given positive time pj , and should
be completed by its due date dj . The machine is available from time
0 onwards and can process no more than one job at a time. The jobs
are partitioned into families F1, . . . ,FF , while f(j) denotes the index
of the family to which job Jj belongs. If we schedule two jobs that
belong to different families contiguously, then we need a given non-
negative setup time si in between that is completely specified by the
family Fi to which the second job belongs. We also assume that we
need a setup for the first job of each family. No setup is needed when
jobs of the same family are scheduled contiguously. During a setup
time no processing of jobs is possible. The machine may be set up
for a particular job prior to its release date. This type of setup times
is called sequence independent setup times. The set of jobs between
two subsequent setups are said to be scheduled in the same batch. The
objective is to minimize the maximum lateness. This problem is denoted
as 1|rj , si|Lmax. This problem is NP-hard, even in the case of no family
setup times (Lenstra et al. [54]) and in the case of equal release dates
(Bruno and Downey [16]).

The presence of release dates is consistent with MRP-controlled en-
vironments. Also, the problem 1|rj , si|Lmax appears as a subproblem
in decomposition based approaches for job shop scheduling with setup
times, such as the Shifting Bottleneck (SB) procedure of Adams et
al. [2]; see Section 3.3. By having an algorithm for the single-machine
problem 1|rj , si|Lmax, we are able to use the SB procedure to schedule
job shops with setup times.

Although the interest in approaches that combine batching and
scheduling in manufacturing is growing (see, e.g., Potts and Van Was-
senhove [65]), we are not aware of any research addressing this par-
ticular problem. We feel therefore that this chapter fills an impor-
tant gap in that it addresses a fundamental practical problem. Also, it
makes a contribution in terms of algorithmic design for solving this type
of NP-hard problem by branch-and-bound, in general, and in terms
of lower bound computing for problems with setup times, in particu-
lar. The lower bounds that work well for the problem without family
setup times, 1|rj |Lmax, including Carlier’s bound (Carlier [17]) and the
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preemptive lower bound obtained by allowing the interruption of the
processing of a job and resumption later on, can be applied to our
problem only if we ignore the setup times completely, which of course
may result in weak lower bounds. For instance, the preemptive lower
bound obtained by solving the 1|rj , pmtn|Lmax problem is found by
Horn’s algorithm inO(n logn) time (Horn [42]); in contrast, the preemp-
tive problem 1|rj , si, pmtn|Lmax is NP-hard, since 1|si|Lmax is (Bruno
and Downey [16]). To clarify the last implication, we remark that for
the problem 1|si, pmtn|Lmax always an optimal solution exists in which
no job is preempted. The problems 1|si|Lmax and 1|si, pmtn|Lmax are
therefore equivalent.

The organization of this chapter is as follows. Section 4.2 discusses
the similarity of the 1|rj , si|Lmax problem to the lot-sizing problem.
In Section 4.3, we observe that for lower bounding purposes we can
see setup times as setup jobs and discuss how to derive those setup
jobs. Section 4.4 discusses a lower bound on the maximum lateness in
a modified problem in which we consider the derived setup jobs and
allow preemption. We show that this lower bound can be computed
in O(n logn) time. Section 4.5 reports on the implementation of the
branch-and-bound algorithm and on our computational experiments;
our results show that we can solve instances with up to 40 jobs to
optimality. Section 4.6 ends this chapter, which is based on Schutten et
al. [75].

4.2 Similarity to the lot-sizing problem

In the lot-sizing model, we are given a set of jobs that need to be sched-
uled on one or more machines. Each job Jj may be split in up to a
given number of sublots. Between sublots of different jobs, we need
a major setup time, whereas between sublots of the same job we only
need a minor setup time or no setup time at all. Potts and Van Wassen-
hove [65] review the literature on batching , i.e., clustering jobs to save
setup times, and lot-sizing. They mention two advantages of job split-
ting. First, splitting jobs may result in a better delivery performance,
because each sublot can be delivered to the customer immediately af-
ter its completion, instead of waiting for the whole job to complete.
The second advantage happens for problems with more than one ma-
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chine. In these problems it is possible that various operations of the
same job overlap, by allowing that the next operation to a sublot starts
immediately after a sublot has been processed. This process is called
lot-streaming , a term introduced by Reiter [67]. Example 4.1 shows that
job splitting can be advantageous.

Example 4.1

Consider the example in Table 4.1 with two jobs that need to be sched-
uled on a single machine. We assume that either job may be split into

Jj bj rj pj dj
J1 1 0 2 7
J2 1 3 2 5

Table 4.1: Instance with job splitting allowed.

two equal sublots. The column ‘bj ’ displays the required setup time
when we switch to or start with processing a sublot of job Jj . The ob-
jective is to minimize the maximum lateness. The first two schedules in
Figure 4.1 are the two possible left-justified schedules with no job split.
The streaked boxes represent the setup times. We see that in the first

J2 J1

4 60 1 3

J2J1

2 3 5 6 8

J1

J2 J1

2 3 5 6 70 1

Figure 4.1: Three possible solutions for the lot-sizing problem.

two schedules one job finishes after its due date. In the last schedule,
however, job J1 is split and both jobs complete at their due date.

We can easily transform the instance in Example 4.1 into an equiv-
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alent instance of the 1|rj , si|Lmax problem. Each sublot is then a job
in the 1|rj , si|Lmax problem with the same release and due dates as the
job they belong to in the original instance. Note that in the lot-sizing
problem we decide when to split a job at the cost of introducing extra
setup times, whereas in the 1|rj , si|Lmax problem we decide which jobs
to cluster in order to save setup times.

4.3 Derivation of setup jobs

Our key observation is that we may regard any setup as the processing
of an imaginary setup job of length equal to the setup time of the family
associated with it. We will develop sufficient conditions for establishing
that certain jobs belonging to the same family are not processed in
the same batch. The implication is that these jobs are separated by a
setup job for which we can specify precedence relations, a release time,
and a due date. Let S be the set of setup jobs that are derived in
this way. For any instance I of 1|rj , si|Lmax, we can then construct an
instance I ′ of 1|rj , prec |Lmax with job set J ∪ S, where prec indicates
the presence of precedence relations between the jobs. In fact, the
precedence constraints in our application have a specific structure. The
crux is that for any instance I and I ′ constructed in this way, we can
show that

L∗
max(I) ≥ L∗

max(I
′),

with L∗
max(I) and L∗

max(I
′) the optimal solution values of these in-

stances. Hence, a lower bound on L∗
max(I) can be computed by com-

puting a lower bound on L∗
max(I

′).
We derive two types of setup jobs: separating setup jobs that have

precedence relations, and unrelated setup jobs that have no precedence
relations. We call the jobs in J the real jobs to distinguish them from
the setup jobs. In the remainder, we let S be the set of setup jobs. Also,
we let  and ≺ mean ‘has to follow’ and ‘has to precede’, respectively.

In Section 4.3.1, we discuss the prerequisites of our approach to
derive setup jobs, including a proof that a setup can indeed be seen
as a setup job with a specific processing time, release date, due date,
and precedence relations. We point out that the setup jobs should be
consistent with each other and introduce a measure of the strength of a
setup job. Finally, we also derive the so-called initial setup jobs. In Sec-
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tion 4.3.2, we discuss the logic behind the derivation of separating setup
jobs and our two strategies to actually derive them. In Section 4.3.3,
we derive unrelated setup jobs.

4.3.1 Preliminaries

Consider any instance I of 1|rj , si|Lmax and let I ′ be the instance of
1|rj , prec|Lmax obtained from I by ignoring the family setup times.
Hence, we have that L∗

max(I
′) ≤ L∗

max(I). Suppose now that we have
established, one way or the other, that in every optimal schedule for I
all jobs in A ⊂ Fi precede all jobs in B ⊂ Fi (B �= ∅) and no job from
A and no job from B are scheduled in the same batch. This then means
that there must be at least one separating setup associated with family
Fi between the last job belonging to A and the first job belonging to
B. Theorem 4.1 validates our key idea that this setup can be viewed as
a separating setup job with a specific processing time, release date, due
date, and precedence relations.

Theorem 4.1 Suppose that in every optimal schedule for instance I all
jobs in A ⊂ Fi precede all jobs in B ⊂ Fi (B �= ∅) and no job from A
and no job from B are scheduled in the same batch. We still have that
L∗
max(I

′) ≤ L∗
max(I), if we add a setup job Js to I ′ with

ps = si,

Js  Jj , for all Jj ∈ A,
Js ≺ Jj , for all Jj ∈ B,
rs = min

Jj∈Fi\A
rj − si,

ds = min
Jj∈B

(dj − pj).

Proof. It only remains to be shown that the specification of rs and
ds is correct. Consider any optimal schedule σ for I and any setup for
family Fi that succeeds all jobs from A and precedes all jobs from B in
this schedule. We associate the setup job Js with this setup. We may
assume that this setup occurs immediately before the execution of the
job it is needed for. Since this may be any job in Fi \A, the release date
of Js follows. Let σ′ be the feasible schedule for I ′ obtained from σ in
the following way: let the sequence of the real jobs in σ′ concur with the
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sequence in σ, and replace the setup for family Fi between the jobs from
A and B with its associated setup job Js. Note that Cj(σ

′) ≤ Cj(σ) for
all Jj ∈ J , and therefore Lj(σ′) ≤ Lj(σ) ≤ L∗

max(I). If we assign ds as
proposed, we have that Js ≺ Jj and ds = dj − pj for some Jj ∈ B, and
hence that

Ls(σ
′) = Cs(σ

′)− ds ≤ Cj(σ
′)− pj − (dj − pj)

≤ Cj(σ)− dj = Lj(σ) ≤ L∗
max(I).

Thus, we proved that Lj(σ′) ≤ L∗
max(I) for every job in I ′, and therefore

L∗
max(I

′) ≤ Lmax(σ
′) ≤ L∗

max(I). �

The crux is that the addition of this separating setup job may in-
crease the value L∗

max(I
′), and thus to improve the lower bound on

L∗
max(I). In the remainder, if we add a setup job to I separating some

sets A and B, then we implicitly assume that it has the release date,
due date and precedence relations as specified in Theorem 4.1.

It is not sensible, even if it were possible, to consider all possible A
and B. The following subsets enable systematic procedures for deriving
setup jobs. Let J i

[j] ∈ Fi denote the job with the jth smallest release

date in family Fi. For any family Fi and any a = 1, . . . , |Fi| and
b = a, . . . , |Fi| define

P i
a,b = {Ji[a], . . . , J i

[b]}.

From now on, we restrict our attention to subsets A = Pi
1,k and subsets

B = Pi
l,|Fi|

, with 1 ≤ k < |Fi| and k < l ≤ |Fi|, for deriving setup jobs.
We may not just derive setup jobs as we please. We have to make

sure that the setup jobs are consistent with each other. For instance,
if we have already derived a setup job between job sets A and B, then
we may not add another setup job between the subsets A′ ⊆ A and
B′⊆ B. To ensure the derivation of consistent setup jobs, we introduce
the notion of induction. We say that the jobs in A left-induce Js, the
jobs in B right-induce Js, and the setup job Js is induced by family
Fi. We construct a so-called induction graph G = (J ∪ S,H), in which
there is an arc (Js, Jj) in H with Js ∈ S and Jj ∈ J if and only if Jj
right-induces Js. Similarly, there is an arc (Jj , Js) in H if and only if
Jj left-induces Js.
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Observation 4.1 If we only consider subsets A = Pi
1,k and B = P i

l,|Fi|

for deriving setup jobs, then the induction graph corresponds to a set of
consistent setup jobs if in its transitive reduction, obtained from G by
removing all arcs that are implied by transitivity, each Jj ∈ J has at
most one ingoing and at most one outgoing arc in H.

Accordingly, we may add a setup job to I ′ if this condition remains
satisfied. Throughout this section, we assume that this consistency is
preserved.

The rank of a setup job is defined as the number of jobs it separates.
If A∪B = Fi, then the separation, and thereby the setup job Js, is the
strongest possible: we then say that Js has full rank . If |A ∪ B| < |Fi|,
then in fact Js separates at least the job sets A and B: we do not know
yet on which side of Js the other jobs in Fi will be scheduled. The rank
of Js is then equal to |A ∪ B|. Intuitively, we prefer setup jobs of high
rank. The aim of this section is to derive such setup jobs in the root
node of the branch-and-bound tree.

One particular type of setup job of full rank is a sitting duck: for
every family Fi, we need a setup job just before the processing of its first
job. Accordingly, we may introduce an initial setup job Js for family Fi

with

ps = si,

ds = min
Jj∈Fi

(dj − pj),

Js ≺ Jj , for all Jj ∈ Fi,

rs = min
Jj∈Fi

rj − si.

4.3.2 Deriving separating setup jobs

The separating setup jobs are derived through sufficient conditions for
having an optimal schedule in which particular jobs of the same family
are not scheduled in the same batch. We stipulate these conditions in
terms of a lower bound lb and an incumbent upper bound ub on L∗

max(I),
each proceeding from the assumption that L∗

max(I) < ub. It is irrelevant
how these lb and ub are obtained. However, the tighter lb and ub are,
the more effective these conditions will be. In fact, there is a strong
interaction between deriving setup jobs and computing lower bounds;
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after all, the more setup jobs are derived, the stronger the lower bound
is likely to be.

The logic behind the derivation of separating setup jobs is the fol-
lowing. Suppose we want to put two jobs in the same batch. If the
release and due dates of these jobs prohibit that these jobs are sched-
uled contiguously, then the machine is idle in between their processing,
if no other job belonging to the same family is available for processing.
If this idle time period T is too long, then saving a single setup does not
make up for what is essentially a loss of machine capacity. We have two
strategies to conclude that T is effectively too long: (i) if T is so long
that we can perform a setup for family Fi in the meantime, and (ii) if a
lower bound for the case that we leave the machine idle during period
T is equal to or larger than the incumbent upper bound. We formalize
these strategies below.

In any optimal schedule, each Jj is scheduled somewhere in the
interval [rj , dj +L∗

max(I)] (j = 1, . . . , n). Accordingly, if L∗
max(I) < ub,

then the largest possible completion time of Jj is d̄j = dj + ub − 1.
We call job Jj safely scheduled if rj + pj ≤ Cj ≤ dj + lb; note that if
each job is safely scheduled, then we have an optimal schedule σ, since
Lmax(σ) ≤ lb ≤ L∗

max(I). For any job set A, let r(A) = minJj∈A rj ,
and d̄(A) = maxJj∈A d̄j ; note that a necessary condition for having
L∗
max(I) < ub is that all jobs in A are completed by time d̄(A).
We are now ready to make the following observation, which plays a

key role in the derivation of the setup jobs.

Observation 4.2 Consider disjoint subsets A ⊂ Fi and B ⊂ Fi with
d̄(A) < r(B). If there exists a schedule σ with Lmax(σ) < ub that puts
jobs from both A and B in the same batch, then it has the following
properties:

• The machine is idle during the period T = [d̄(A), r(B)], if there is
no job Jj ∈ Fi \ (A∪ B) available for processing during period T .
This means that the machine is definitely idle during period T if
A∪B = Fi.

• The batch spans at least the interval [max
Jj∈A

(d̄j − pj),min
Jj∈B

(rj + pj)].

As pointed out before, a long idle time period T makes it unlikely that
there indeed exists an optimal schedule in which some job from A and
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some job from B are scheduled in the same batch. Or equivalently, a
long period T makes it likely that there exists an optimal schedule in
which no job from A and no job from B are scheduled in the same batch.

The following theorem gives an effective means for deriving setup
jobs. It says that if T is large enough to accommodate a setup for family
Fi, then we may introduce a setup job of full rank.

Theorem 4.2 Suppose L∗
max(I) < ub. If there is a family Fi (i =

1, . . . , F) and an index k (k = 1, . . . , |Fi| − 1), for which

d̄(Pi
1,k) + si ≤ r(Pi

k+1,|Fi|
), (4.1)

then we may introduce a setup job Js of full rank that separates Pi
1,k

from Pi
k+1,|Fi|

.

Proof. Let σ be any optimal schedule. There are two cases to consider:

1. There is no batch in σ that contains a job from P i
1,k as well as a

job from Pi
k+1,|Fi|

. In this case, there is a setup between P i
1,k and

Pi
k+1,|Fi |

.

2. There is a batch in σ that contains a job from P i
1,k as well as

a job from Pi
k+1,|Fi|

. In this case, the machine is idle between

d̄(Pi
1,k) and r(Pi

k+1,|Fi|
); see Observation 4.2. We can then trans-

form σ into an equivalent schedule in which a setup, performed
during period T = [d̄(Pi

1,k), r(Pi
k+1,|Fi|

)], splits this batch into two
consecutive batches of the same family.

Therefore, we may assume that in every optimal solution a setup
separates Pi

1,k and Pi
k+1,|Fi|

. �

The next theorem is a generalization of Theorem 4.2 to derive setup
jobs of smaller rank. If we cannot separate the sets Pi

1,k and Pi
k+1,|Fi|,

,

then we may try to separate the sets Pi
1,k and Pi

k+l,|Fi|,
for some l ≥ 2.

After all, the larger l is, the longer the idle time period T becomes if we
want to put some jobs belonging to these sets in the same batch. The
condition for testing if T gets too long is similar to condition (1), albeit
period T should also have room to accommodate the ‘intermittent jobs’
J i
[k+1], . . . , J

i
[k+l−1].
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Theorem 4.3 Suppose L∗
max(I) < ub. If there is a family Fi (1 ≤ i ≤

F), an index k (1 ≤ k ≤ |Fi| − 1), and an index l (1 ≤ l ≤ |Fi| − k)
such that the interval

[d̄(Pi
1,k), r(Pi

k+l,|Fi|
)] (4.2)

is large enough to safely schedule each of the jobs J i
[k+1], . . . , J

i
[k+l−1]

and a setup for family Fi in it, then we may introduce a setup job Js of
rank |Fi| − l + 1 that separates the job sets Pi

1,k and Pi
k+l,|Fi|

. �

We now come to our second strategy to derive setup jobs. Suppose
lb(A,B) is a lower bound for the case that some unspecified job from
A and some unspecified job from B are scheduled in the same batch.
If lb(A,B) ≥ ub, then the sets A and B are obviously separated in
any optimal schedule if L∗

max(I) < ub. In Section 4.4, we show how to
compute such a bound.

Theorem 4.4 Suppose L∗
max(I) < ub. If d̄(Pi

1,k) < r(Pi
k+l,|Fi|

) and

lb(P i
1,k ,Pi

k+l,|Fi|
) ≥ ub, (4.3)

for some i, k and l with 1 ≤ i ≤ F , 1 ≤ k < |Fi| and 1 ≤ l ≤ |Fi| − k,
then we may introduce a setup job of rank |Fi| − l + 1 that separates
Pi
1,k from Pi

k+l,|Fi|
. �

4.3.3 Deriving unrelated setup jobs

The derivation of unrelated setup jobs, which have no precedence re-
lations, proceeds by the premise that batches of different families can-
not be processed simultaneously. Suppose that d̄(Pi

1,k) < r(P i
k+l,|Fi |

)

and d̄(Ph
1,a) < r(Ph

a+b,|Fh|
) and the intervals [d̄(Pi

1,k), r(Pi
k+l,|Fi|

)] and

[d̄(Ph
1,a), r(Ph

a+b,|Fh|
)] overlap in time; that is, there is a point in time

t such that d̄(Pi
1,k) ≤ t ≤ r(Pi

k+l,|Fi|
) and d̄(Ph

1,a) ≤ t ≤ r(Ph
a+b,|Fh|

),
with at least one ≤ sign holding as a strict inequality. The conclusion
must then be that we may at least separate either Pi

1,k and P i
k+l,|Fi |

,

or Ph
1,a and Ph

a+b,|Fh|
, since the machine can process no more than one

batch at a time. We may therefore introduce a setup job, but it has no
precedence relations, since we cannot associate the setup job with either
family. For this reason, these unrelated setup jobs are quite weak. They
have rank 0, and their release and due dates are not very tight either.
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Theorem 4.5 If there are two families Fi and Fh and indices k, l, a
and b for which the time intervals [d̄(Pi

1,k), r(P i
k+l,|Fi|

)] and [d̄(Ph
1,a),

r(Ph
a+b,|Fh|

)] overlap, then we may introduce a setup job Js of rank 0
with

ps = min{si, sh},
rs = min{r(Pi

k+1,|Fi|
)− si, r(Ph

a+1,|Fh|
)− sh},

ds = max{ min
Jj∈P

i
k+l,|Fi|

(dj − pj), min
Jj∈P

h
a+b,|Fh|

(dj − pj)}.

�

Obviously, any number of families may be involved in this type of
derivation, but the resulting setup jobs will then be even weaker.

4.4 Lower bounds

In this section, we first present the preemptive lower bound for the
1|rj , prec|Lmax problem. Then, we show how to compute the bound
lb(Pi

1,k,P i
k+l,|Fi |

) needed in condition (4.3) to derive setup jobs.
First of all, however, we characterize the acyclic directed precedence

graph G induced by any set S of consistent setup jobs. We assume that
S contains for each family at least the initial setup job. Let Si be the set
of separating setup jobs induced by the jobs in Fi. We have as vertex
set V = J ∪ S and there is an arc (Jj , Jk) if and only if Jj ≺ Jk. If
there is an arc (Jj , Jk), then Jj is an immediate predecessor of Jk and
Jk is an immediate successor of Jj . If there is a path in G from Jj to
Jk , then Jj is a predecessor of Jk; Jk is then a successor of Jj . There
are no arcs between the unrelated setup jobs and the real jobs.

Let G′ = (V,A) be the transitive reduction of this graph, where A
denotes the remaining arc set. The release and due dates jobs may not
be consistent with the precedence constraints; e.g., we may have that
rk < rj +pj for some Jj ≺ Jk. We therefore modify the release and due
dates in the following way:

rj ← max{rj , max
Jk≺Jj

(rk + pk)} for all Jj ∈ J ∪ S

and
dj ← min{dj , min

Jj≺Jk
(dk − pk)} for all Jj ∈ J ∪ S.
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This modification neither affects the optimal solution, nor the optimal
solution value.

The graph G′ then has the following properties:

• It decomposes into m arc-disjoint connected subgraphs, one for
every family, on the one hand, and isolated vertices representing
the unrelated setup jobs, on the other hand.

• For any arc (Jj , Jk) ∈ A, we have that rj+pj ≤ rk and dj ≤ dk−pk.

• For any arc (Jj , Jk) ∈ A, we have that if Jj ∈ J , then Jk ∈ S,
and, conversely, if Jj ∈ S, then Jk ∈ J .

• Each job in J has at most one immediate successor and at most
one immediate predecessor.

• There are O(n) arcs; this means that the release and due date
modification can be carried out in O(n) time.

Due to the specific structure of the precedence constraints in our
application, the derivation of setup jobs induce instances of what we
term the 1|rj , setup-prec|Lmax problem.

4.4.1 The preemptive bound

The 1|rj , prec, pmtn|Lmax problem is solvable by Horn’s rule (Horn [42])
after release and due date modification in O(n2) time. For the prob-
lem 1|rj , setup-prec, pmtn|Lmax, the modification of the release and due
dates takes O(n) time only. Hence, we have the following result, the
proof of which is included for sake of completeness.

Theorem 4.6 The problem 1|rj , setup-prec, pmtn |Lmax is solvable in
O(n logn) time by the following rule: at any time schedule an available
job with the smallest due date.

Proof. First of all, note that Horn’s rule generates a feasible schedule
for the problem 1|rj , setup-prec, pmtn|Lmax. This is true, since if Jj ≺
Jk, then we have that rj + pj ≤ rk and dj ≤ dk − pk .

Let now π be the schedule produced by Horn’s rule, and let σ be
any optimal schedule. We shall prove that we can transform σ into π by
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rescheduling jobs while preserving feasibility and optimality. Compare
σ with π from time 0 onwards, and let t be the first time at which the
schedules start to differ: suppose Jj is scheduled between time t and t1
in σ and Jk is scheduled between time t and t2 in π. Let τ = min{t1, t2}.
Find time s > τ that designates the smallest interval [t, s] in which Jk
is processed for exactly τ − t ≤ pk units of time, according to σ. Let A
be the set of successors of Jj in G that are scheduled between t and s
in σ. We then have that

dj ≤ dl for all Jl ∈ A.

Also, since Jk is scheduled at time t in π, not Jj , we have that

dk ≤ dj ,

Hence, the following transformation of σ retains both feasibility and
optimality:

• Remove all portions of Jj , Jk and the jobs in A between time t
and s, but leave the other jobs intact.

• Schedule Jk in the time slot [t, τ ].

• Schedule Jj and the jobs inA in the remaining available time slots
between τ and s in the same order as before.

The optimality of the resulting schedule follows from an interchange
argument, similar to the one used in Section 1.2.1. Now let t ← τ ,
and repeat the argument till we reach the end of the schedule; both
schedules are then identical. �

This rule can evidently be implemented in O(n logn) time, since
there are n real and no more than n setup jobs, there are O(n) pre-
emptions, and the release and due dates of the available jobs need to
be maintained in a partial order only.

4.4.2 Computing the bound lb(P i
1,k,P

i
k+l,|Fi |

)

The bound lb(Pi
1,k,P i

k+l,|Fi |
), needed for condition (4.3), is a lower

bound resulting from scheduling some unspecified job in Pi
1,k and some
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unspecified job in Pi
k+l,|Fi|

in the same batch, say, B (i = 1, . . . , F, 1 ≤
k < |Fi|, 0 ≤ l ≤ |Fi| − 1). We assume that some separating and unre-
lated setup jobs already have been derived and that the setup job that
may be induced by this bound is consistent with them.

If we decide to schedule some job from Pi
1,k and some job from

Pi
k+l,|Fi|

in the same batch, say, B, then B spans at least the interval

T = [t1, t2], where

t1 = max
Jj∈Pi

1,k

(d̄j − pj),

and

t2 = min
Jj∈P

i
k+l,|Fi|

(rj + pj);

see Observation 1. We assume that t2 > t1. If not, then we let
lb(Pi

1,k,Pi
k+l,|Fi|

) = −∞.

Let I ′ be any instance of the 1|rj , setup-prec|Lmax problem with the
condition that we schedule those unspecified jobs in the same batch. To
compute a lower bound, we construct an instance I ′′ with the additional
constraint that the machine is not available for processing during the
interval T = [t1, t2]. We initialize I ′′ = I ′ and then remove all jobs
Jj ∈ Fi ∪ Si from I ′′ for which the time intervals [t1, t2] and [rj , d̄j ]
overlap, with Si the setup jobs associated with family Fi. We do this
to ensure that L∗

max(I
′′) is a valid lower bound on L∗

max(I
′).

Moreover, we try to derive more separating setup jobs for each family
other than Fi. If the machine is not available during the period T =
[t1, t2], then any two jobs Jj and Jk cannot be in the same batch if
rj > t1− pj and d̄k < t2 + pk; after all, Jj must then be processed after
period T and Jk before period T . So, if Ch = {Jj ∈ Fh | d̄j < t2 + pj}
and Dh = {Jj ∈ Fh | rj > t1 − pj} and Ch �= ∅ and Dh �= ∅, then we
may add a setup job Js to I ′′ that separates the sets Ch and Dh for any
family Fh �= Fi, if this setup job is consistent with the other setup jobs.

We now compute the preemptive lower bound for I ′′ subject to the
condition that the machine is not available during period T . We can
easily cope with this condition by adding an independent dummy job
J0 to I ′′ with r0 = t1, p0 = t2 − t1, and d0 = minJj∈J∪S dj − 1. Horn’s
rule schedules J0 then in period T , and we compute lb(Pi

1,k,P i
k+l,|Fi |

)
as maxJj∈I ′′\{J0} Lj .
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4.5 Implementation and computational exper-

iments

4.5.1 Implementation

Our branch-and-bound algorithm uses a forward sequencing branching
rule, in which a node at level k (k = 0, . . . , n) corresponds to an active
partial schedule consisting of k jobs. A node at level k has n−k descen-
dant nodes, one for each unscheduled job. We branch from the nodes
in order of non-decreasing release dates of the jobs associated with the
nodes.

In the root node of the tree, we run a two-phase randomized local-
search algorithm to find a good initial upper bound ub; it uses simulated
annealing first and then tries to improve the solution by tabu search.
The neighborhood of a feasible sequence is in either phase defined as the
set of sequences obtained by either relocating any single job, or swapping
any two jobs in the sequence. In fact, both the simulated annealing
and the tabu search subroutines are straightforward implementations
of the basic principles, as outlined in for instance Van Laarhoven and
Aarts [48] and Glover [32]. Given this upper bound, we iteratively derive
as many and as strong as possible consistent setup jobs. Deriving setup
jobs is computationally expensive; for this reason, it is carried out only
in the root node of the branch-and-bound tree. Although it takes only
O(n logn) time, it is too time-consuming to compute the preemptive
bound in each node of the tree. We use Carlier’s lower bound [17] for
the problem 1|rj |Lmax; this bound requires only O(n) time in each node.

Given an upper bound ub, we derive the setup jobs in the follow-
ing way. First of all, we specify the initial setup jobs, and then we
compute the preemptive lower bound lb for the instance of the corre-
sponding 1|rj , setup-prec|Lmax problem. Recall that we like to have
setup jobs of full rank. In addition, we make sure that we derive only
setup jobs that are consistent with those already derived. We first check
condition (4.1) for all families Fi (i = 1, . . . , F ) and subsets Pi

1,k and

Pi
k+1,|Fi|

(k = 1, . . . , |Fi| − 1). If at least one setup job has been de-
rived in this way, compute lb again, and if lb has improved, then check
condition (4.1) again, and so on. If no setup job has been derived, or
if lb has not improved, then check out whether lb(P i

1,k,Pi
k+1,|Fi|

) ≥ ub,
for i = 1, . . . , F, k = 1, . . . , |Fi| − 1, which also induces setup jobs of
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full rank. If this test is successful and lb has improved, then go back
to condition (4.1) and repeat until no setup job of full rank can be
derived any more. In the same fashion, we try next to generate setup
jobs of rank |Fi|−1 by alternately checking conditions (4.2), stipulated
in Theorem 4.3, and conditions (4.3) with l = 2, stipulated in Theo-
rem 4.4. If this improves lb, then again we check the conditions for
deriving setup jobs of full rank, and so on up to a certain upper bound
on l. If no separating setup job can be derived any more, then we try to
derive unrelated jobs. If this succeeds, then we compute lb again, and
once more go through the entire process. The process is terminated if
no separating and no unrelated setup job can be derived any more.

Also, we use several simple but effective dominance criteria to re-
strict the growth of the branch-and-bound tree. Let π be a partial
schedule corresponding to an unfathomed node of the search tree and
let {π} be the set of jobs in π. If there is a π∗ �= π with {π∗} = {π}
such that

Lmax(π
∗σ) ≤ Lmax(πσ), (4.4)

for any sequence σ for the jobs in J \ {π}, then we can discard π and
fathom the node; π is then dominated by π∗. If condition (4.4) holds
with equality for all σ, then we discard either π, or π∗. If P �= NP,
however, we can not verify in polynomial time whether this condition
indeed holds. A strong sufficient condition for having π dominated by
π∗ �= π with {π∗} = {π} is that

Lmax(π
∗) ≤ max{lb, Lmax(π)}, (4.5)

C(π∗) ≤ C(π), (4.6)

and

C(π∗) + s(f ′(π∗), f ′(π)) ≤ max{C(π), min
Jj∈Ff ′(π)\{π}

rj}, (4.7)

where f ′(π) denotes the family index of the last job in π and

s(f ′(π∗), f ′(π)) =

{
sf ′(π) if f ′(π∗) �= f ′(π)
0 otherwise.

Conditions (4.6) and (4.7) ensure that any job in J \ {π} can start
in case of π∗ as an initial sequence at least as soon as in case of π as



74 4 - S����-������� ��������� !��� ����� �����

an initial sequence. Of course, finding out whether there exists such
a π∗ is an NP-complete problem. The following dominance rule is an
easy-to-check sufficient condition for the existence of such a π∗.

Dominance Rule 4.1 The partial schedule πJj can be discarded if
there is some Jk ∈ J \ {πJj} such that

C(πJk) + s(f(k), f(j)) ≤ rj .

On the other hand, verifying whether a given π∗ satisfies conditions
(4.5), (4.6), and (4.7) can be done in polynomial time. In the branch-
and-bound tree, we consider therefore three promising options for π∗:

• If π = π1JjJk , then consider π∗ = π1JkJj .

• If π = π1Jjπ2Jk , with Jj the last job belonging to the same family
as Jk, then consider π∗ = π1Jkπ2Jj and π∗ = π1JjJkπ2.

4.5.2 Computational experiments

The performance of the branch-and-bound algorithm was evaluated for
instances with up to 50 jobs. All parameters were randomly generated
from discrete uniform distributions, except for the release times: jobs
arrive at the machine according to a Poisson process. The processing
times were drawn from the discrete uniform distribution [1, 100], the
number of families F from the uniform distribution [2, +n/5,], and the
family indices of the jobs from the uniform distribution [1, F ]. Let p̄
denote the average job processing time. In addition to n, there are four
input parameters:

• s, defining the interval [1, s · p̄] from which the setup times are
uniformly drawn,

• a and k, defining the mean interarrival time (p̄ + a · s̄)/k of the
jobs, where s̄ is the average setup time, and

• d, defining the interval [rj + pj , rj + pj + d · p̄] from which dj is
uniformly drawn.
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We generated instances for n = 30, 40, 50, s = 0.25, 0.50, 0.75, a =
0.25, 0.33, 0.5, k = 0.8, 0.9 and d = 2, 4, 6. For each combination of
n, s, a, k, and d, we generated 15 instances. Table 4.2 summarizes
of our computational results for varying values of n, the number of
jobs, and k, determining the arrival intensity. Crudely speaking, we

n k #opt #nodes seconds

30 0.8 401 35,614 0.7
30 0.9 395 48,688 0.9
40 0.8 385 40,357 0.9
40 0.9 355 107,832 2.4
50 0.8 358 83,544 2.1
50 0.9 295 131,112 3.1

Table 4.2: Performance of the branch-and-bound algorithm.

can say that k determines the workload in the shop: the larger k, the
higher the workload. We found that the performance of the branch-and-
bound algorithm does not significantly vary with the other parameters.
The column ‘#opt’ gives the number of instances out of 405 for which
the branch-and-bound algorithm found an optimal solution within one
minute on an HP 9000/710 workstation. It shows that we solve almost
all instances with n = 30. The next two columns give averages only
for the instances solved to optimality within one minute. The column
‘#nodes’ gives the average number of nodes searched, and the column
‘seconds’ gives the average computing time in seconds that the algo-
rithm takes. The time for the preprocessing phase, i.e., for running the
approximation algorithms and deriving the setup jobs, is not included
here. The preprocessing phases typically takes about 2 to 4 seconds on
the HP. Table 4.2 shows that the instances become more difficult with
increasing number of jobs, as expected, and with increasing value of
k. If the workload is high, i.e., if there are many jobs available at the
same time for processing, then it is more difficult to derive setup jobs
of high rank, and consequently, our lower bounds become less effective
with increasing value of k. Table 4.2 also shows that the instances that
we can solve within the time limit take little time on average. This sug-
gests a considerable watershed between computationally easy and hard
instances.
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Table 4.3 presents, for varying n and k, the results of the preprocess-
ing step for those instances that were solved to optimality within one
minute. The column ‘lb1’ gives the average preemptive lower bound in
the root node of the search tree without the addition of derived setup
jobs. The column ‘lb2’ gives this lower bound with the addition of
the setup jobs. The average value of the initial solution found by our
approximation algorithm is found in the column ‘ub’. The average op-
timal solution value is given in the column ‘opt’. We see that the gap
between the initial lower bound lb1 and the optimal solution value opt
is approximately halved by the addition of the setup jobs. The average
number of derived setup jobs is given in the column ‘derived’, whereas
the average number of setups in the optimal solution we found is given
in the column ‘setups’. Note that in general there exist more than one
optimal solution and each may have a different number of setups.

n k lb1 lb2 ub opt derived setups

30 0.8 96.4 125.1 154.0 152.8 14.4 18.4
30 0.9 120.8 152.7 188.1 186.5 12.8 17.4
40 0.8 118.3 153.9 185.0 183.9 19.6 25.7
40 0.9 150.5 188.5 226.7 224.7 17.2 24.2
50 0.8 126.5 171.3 204.3 202.6 25.5 33.5
50 0.9 158.5 200.1 240.4 237.7 22.4 31.2

Table 4.3: Results of preprocessing: solvable instances.

Table 4.4 presents the same information for those instances for which
the algorithm failed to find an optimal solution within one minute. Since

n k lb1 lb2 ub ub∗ derived

30 0.8 342.2 409.2 468.0 468.0 8.8
30 0.9 375.1 433.1 522.3 520.5 7.6
40 0.8 292.4 374.2 471.7 470.1 13.2
40 0.9 334.5 425.0 517.3 515.8 12.8
50 0.8 284.4 377.5 471.6 468.9 19.1
50 0.9 332.8 430.4 533.5 532.1 17.8

Table 4.4: Results of preprocessing: hard instances.
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we do not have the optimal solution values, we have added the column
ub∗, which gives the average value of the incumbent upper bound after
one minute of computation time.

Our computational results did not reveal any relation between the
difficulty of an instance and the choices of the parameters a, s, and d;
the difficulty of an instance primarily depends on how close the release
dates are to each other. Close release dates are most likely to occur in
case of a high workload parameter k. The performance of the algorithm
deteriorates in case of close release dates for two reasons. First, such
release dates in combination with the almost agreeable due dates lead to
a considerable lateness. This makes that d̄j , the latest possible comple-
tion time of job Jj , is relatively large; we then may expect to have few
sets for which d̄(Pi

1,k) < r(Pi
k+l,|Fi|

), and as a result, fewer setup jobs
and thereby weaker lower bounds. Second, if the release dates are close
to each other, then certain dominance criteria in our branch-and-bound
algorithm are less effective. Indeed, Table 4.4 confirms our expectations:
it shows that difficult instances have larger L∗

max and permit fewer setup
jobs than the solvable instances.

4.6 Conclusions

This chapter has discussed our branch-and-bound algorithm for the
problem 1|rj , si|Lmax. For lower bounding purposes, we have observed
that setup times can be seen as setup jobs. We have derived two types of
setup jobs: separating setup jobs and unrelated setup jobs. Some sim-
ple dominance rules effectively restrict the growth of the branch-and-
bound tree. The computational experiments indicate that the branch-
and-bound algorithm solves instances with up to 40 jobs in reasonable
time. The next chapter discusses the parallel-machine counterpart of
the problem 1|rj , si|Lmax.
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Chapter 5

Parallel-machine scheduling

with family setup times

5.1 Introduction

This chapter discusses the parallel-machine version of the problem dis-
cussed in the previous chapter: the problem P |rj , si|Lmax. Parallel-
machine scheduling comes down to assigning each job to one of the
parallel machines and sequencing the jobs assigned to the same ma-
chine.

The plan of this chapter is as follows. First, we present in Section 5.2
a characterization of an optimal schedule for a class of parallel-machine
scheduling problems. The problem P |rj , si|Lmax belongs to this class.
In Section 5.3, we describe a branch-and-bound algorithm for this prob-
lem. This algorithm builds on the algorithm for the single-machine case
discussed in the previous chapter. Section 5.4 reports on some imple-
mentation aspects and computational results. Section 5.5 concludes
this chapter. This chapter is based on Schutten and Leussink [74] and
Schutten [71].

5.2 Characterization of an optimal schedule

In this section, we consider the problem of scheduling a set J consist-
ing of n independent jobs J1, J2, . . . , Jn onm identical parallel machines
M1,M2, . . . ,Mm. In contrast to the remainder of this chapter, we con-
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sider in this section sequence dependent setup times, i.e., there is a setup
time sij between the processing of job Ji and Jj . Before the first job Jj
on each machine, we need a setup time s0j . Each job Jj (j = 1, . . . , n)
must be processed without preemption on exactly one of the machines
during a given non-negative time pj and may have a release date and
a due date. Each machine Mk (k = 1, . . . , m) is available from a given
non-negative time Sk onwards and can process at most one job at a
time. A schedule σ specifies for each job Jj a completion time Cj(σ).
The quality of schedule σ is measured by a regular objective function
f(σ) that needs to be minimized. An objective function f is called reg-
ular if f(σ1) > f(σ2) implies that Cj(σ1) > Cj(σ2) for at least one j
(j = 1, . . . , n); cf. Baker [6]. For any scheduling problem with a regular
objective function, there always exists a left-justified schedule that is
optimal.

In Section 5.2.1, we explain the concept of list scheduling. We point
out that list schedules need not be dominant for problems with se-
quence dependent setup times if the list scheduling algorithm focuses
on the starting times of the jobs. In Section 5.2.2, we prove that the
list schedules are dominant if the list scheduling algorithm focuses on
the completion times of the jobs.

5.2.1 Standard list scheduling

Given a certain list or permutation π of the job set J , a standard list
scheduling algorithm constructs a schedule for the parallel machines in
the following way: the next job on the list is scheduled on the machine
that becomes available first. If a tie exists, then the job is usually
scheduled on the machine with the smallest index. Thus, this algorithm
focuses on the starting times of the jobs. The schedule that results from
the list π is denoted by LIST(π). Several authors analyze the worst-case
performance of list scheduling algorithms. For instance, Graham [37]
analyzes the worst-case performance of the list scheduling algorithm
with the jobs sorted in order of non-increasing processing times for the
problem P ||Cmax. List schedules are also used in branch-and-bound
algorithms for problems in which the set of list schedules is dominant ,
i.e., contains at least one optimal solution. Woerlee [85], for instance,
develops such a branch-and-bound algorithm for the problem P |rj |Lmax.

A schedule in which no machine is kept idle when there is a job
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available for processing is called a non-delay schedule. Given a non-
delay schedule σ, there is exactly one list π such that LIST(π) = σ: the
ith job of π is the job with the ith smallest starting time in σ. Therefore,
if for a certain problem the non-delay schedules are dominant, then
enumerating all possible lists and evaluating the resulting list schedules
yields an optimal solution; see also Elmaghraby and Park [25].

For problems with setup times, however, the set of non-delay sched-
ules is not dominant. Ovacik and Uzsoy [62] present an instance of the
problem P |sij |Cmax for which the set of list schedules contains no op-
timal solution. The data of this instance with two machines and three
jobs are given in Table 5.1. Due to the large setup times, it is evident

sij j
Jj pj i 1 2 3
J1 1 0 1 1 10
J2 2 1 0 10 10
J3 3 2 10 0 1

3 10 10 0

Table 5.1: Processing times and setup times for counter example.

that J3 must be scheduled last. So, the only relevant lists are J1−J2−J3
and J2 − J1 − J3, but neither list gives the optimal solution, as shown
in Figure 5.1. For problems with general release and due dates the

M1

M2

0 1

J1

2

4 7

s01

s02 s23J2 J3

10

3

Figure 5.1: Optimal solution.

non-delay schedules are not dominant either.
In the following section, we present an alternative list scheduling

algorithm. This algorithm focuses on the completion times of the jobs
instead of the starting times. We show that the list schedules obtained
in this way are dominant, even for problems with sequence dependent
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setup times. For problems without setup times, this alternative list
scheduling algorithm is equal to the standard list scheduling algorithm.

5.2.2 An alternative list scheduling algorithm

Recall that standard list scheduling algorithms assign the next job of the
list to the machine that becomes available first. In the alternative list
scheduling algorithm we assign the next job of the list to the machine
on which it will be completed first. The schedule that results from list
π using the latter algorithm is denoted by g(π). Note that for problems
without setup times LIST(π) = g(π) for every list π. Note also that g(π)
is constructed in O(nm) time, whereas LIST(π) takes O(n logm) time.
Cho and Sahni [20] also use a list scheduling algorithm that focuses on
the completion times. They derive a worst-case performance ratio of
this algorithm for the problem Q||Cmax and special cases of it.

The following theorem proves that the list schedules obtained with
the alternative list scheduling algorithm are dominant for a broad class
of parallel-machine scheduling problems; cf. Schutten [71].

Theorem 5.1 Suppose that a set of jobs needs to be scheduled without
preemption on identical parallel machines. The jobs have release dates,
setup times need to be taken into account, and some regular cost function
needs to be minimized. Then, there exists a list π such that g(π) is an
optimal schedule.

Before we prove this theorem, we introduce some additional nota-
tion. Let π be any list of a subset of J . g(π) is then a partial schedule.
Denote by ni(σ) (i = 1, . . . ,m) the number of jobs that are scheduled on
machine Mi in the (partial) schedule σ and let Ω be the set of optimal
complete schedules. We say that a partial schedule σ′ deviates from a
complete schedule σ if one of the following conditions holds:

1. ni(σ′) > ni(σ) for at least one i (1 ≤ i ≤m);

2. the jth job on machine Mi in σ′ is not the jth job on machine Mi

in σ for some i and j (1 ≤ i ≤m; 1 ≤ j ≤ ni(σ′)).

Let τ(σ) be the maximum number of jobs that any list π can contain
such that g(π) does not deviate from a given σ, that is,

τ(σ) = max
π∈Π

{|π| | g(π) does not deviate from σ},
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where Π is the set of all possible lists of subsets of J and |π| is the
number of jobs in π. We are now ready to prove the theorem. We do
this by contradiction.

Proof of Theorem 5.1. Let σ∗ ∈ Ω be any optimal schedule for which

τ(σ∗) = max
σ∈Ω

τ(σ).

If the theorem does not hold, then τ(σ∗) < n. Let π∗ be such that it
contains τ(σ∗) jobs and g(π∗) does not deviate from σ∗.

Consider the directed graph D = (V,A) with a node vi ∈ V for
each machine Mi (i = 1, . . . ,m). Suppose that ni(σ∗) > ni(g(π∗)). Let
J[i] be the first job on Mi in σ∗ that is not in g(π∗) and let Ri be the
job sequence that consists of J[i] and its successors on Mi in σ∗. Note
that Ri contains precisely those jobs onMi in σ∗ that are not in g(π∗).
Suppose that J[i] is scheduled on machine Mj in g(π∗J[i]). Then we
have that j �= i, because τ(σ∗) is maximal. Draw an arc in D from vi
to vj . Do this for every machine Mi with ni(σ∗) > ni(g(π∗)). We can
distinguish two cases:

1. There is a vj ∈ V with an incoming arc and no outgoing arc, e.g.,
(vi, vj) ∈ A. Then we know that in σ∗ and in g(π∗) exactly the
same jobs are scheduled on Mj , because otherwise vj would have
had an outgoing arc. Also,

C[i](g(π
∗J[i])) ≤ C[i](σ

∗),

due to the way J[i] is assigned to a machine in g(π∗J[i]). Let σ′

be the schedule obtained from σ by moving the sequence Ri to
Mj . σ

′ is also optimal, because C[i](σ
′) ≤ C[i](σ), and therefore

Cj(σ′) ≤ Cj(σ) for j = 1, . . . , n. What is more, g(π∗J[i]) does not
deviate from σ′ ∈ Ω, which is a contradiction with the maximality
of τ(σ∗).

2. There is no vj ∈ V with an incoming arc and no outgoing arc. This
means that each vj ∈ V has either an outgoing arc, or neither an
incoming nor, an outgoing arc. Then must D contain at least
one directed cycle K. Without loss of generality, we assume that
K = v1v2 . . . vpv1. Let σ′ be the schedule obtained from σ by
moving the sequences R1, . . . ,Rp as follows: move sequence R1 to
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machine M2, R2 to M3,. . .,Rp−1 to Mp, and Rp to M1. Using the
same arguments as in case 1, we conclude that σ′ is optimal, too.
Since π∗J[1] does not deviate from σ

′, this is, again, a contradiction
with the maximality of τ(σ∗). �

Theorem 5.1 implies that a set of at most n! schedules is dominant
for many parallel-machine scheduling problems. Note that different
lists may result in the same schedule. Dominance rules that prevent
exploring several lists that result in the same schedule can even further
reduce this set.

The proof of Theorem 5.1 depends on the fact that C[i](σ
′) ≤ C[i](σ

∗)
implies that Cj(σ

′) ≤ Cj(σ
∗) for all jobs Jj in the sequence Ri. This

condition does not hold for non-identical parallel-machine scheduling
problems. Hence, Theorem 5.1 does not hold for uniform and unrelated
parallel-machine scheduling problems.

5.3 A branch-and-bound algorithm

In this section, we discuss the branch-and-bound algorithm for the prob-
lem P |rj , si|Lmax. This algorithm exploits Theorem 5.1. In Sections
5.3.1-5.3.4, the main ingredients of the algorithm are discussed, such as
the lower and upper bounds and the dominance rules.

5.3.1 The search tree

We adopt a forward branching rule: each node at level k of the search
tree corresponds to a permutation π consisting of k jobs (k = 0, . . . , n).
A node at level k has n−k descendant nodes: one for each unscheduled
job. We employ an active node search: we branch only from one node
at a time, thereby adding some unscheduled job Jj to π, which leads to
the sequence πJj . We branch from the nodes in order of non-decreasing
release dates. We backtrack at level n, or if we can discard the active
node.

5.3.2 Upper bounds

We used several constructive heuristics to generate upper bounds on
L∗
max. Some of these heuristics are based on dispatching rules and some
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are based on cheapest insertion. Test results for these algorithms can
be found in Section 5.4.2.

5.3.3 Lower bounds

An important issue for computing lower bounds on L∗
max is how to take

into account the necessary setups. In the previous chapter, we have
seen that setups can be viewed as setup jobs with specific release and
due dates and processing times. Also, sufficient conditions are given
that ensure when a setup job may be introduced. For the problem
P |rj , si|Lmax, we use setup jobs as well to compute lower bounds. We
derive setup jobs in the same way as in the previous chapter. We use
two kinds of lower bounds. One that follows by allowing preemption,
i.e., a job may be interrupted and resumed later on. The second lower
bound is based on a lower bound for the problem P |rj |Lmax given by
Carlier [18].

The preemptive lower bound

The problem 1|rj , pmtn|Lmax is easy to solve by Horn’s rule (Horn [42]).
This rule schedules at each moment in time the job with the smallest
due date among all available jobs; see Section 4.4.1. One might ex-
pect that this rule also results in an optimal schedule for the problem
P |rj , pmtn|Lmax. This is not true. To see this, consider the example
from Table 5.2 with four jobs and two machines.

Jj rj pj dj
J1 0 10 10
J2 3 10 35
J3 4 30 40
J4 0 15 15

Table 5.2: Data for a counter example

Horn’s rule gives the schedule J1J2 on machine M1 and J4J3 on
machine M2. The maximum lateness of this schedule is 5. The optimal
schedule, however, is J1J3 on machine M1 and J4J2 on machine M2

with maximum lateness 0.
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Suppose that we want to compute a lower bound in a node of
the branch-and-bound tree. We are interested only whether this lower
bound is at least ub, where ub is an upper bound on L∗

max. Suppose π
is the permutation of a subset of J that is associated with this node.
We now contruct a graph D such that there exists a flow in D of value∑

Jj∈J\π pj if and only if a preemptive schedule for the unscheduled
jobs exists with maximum lateness smaller than ub.

Let ci be the completion time of the last job on machineMi in g(π).
Without loss of generality, we assume that c1 ≤ c2 ≤ . . . ≤ cm. Each
job Jj ∈ J \π must be completed before dj = dj+ub−1; otherwise, the
lateness of Jj is at least ub, and π does not lead to an improvement of
ub. Let T be the collection of points in time {rj |Jj ∈ J \ π} ∪ {dj |Jj ∈
J \ π} ∪ {c1, . . . , cm}. Define q := 2 · (n− |π|) +m; q is the maximum
number of elements in T . Let ti (1 ≤ i ≤ q) be such that ti ∈ T ,
q⋃

i=1

ti = T and t1 ≤ t2 ≤ . . . ≤ tq. We may assume that no job is

interrupted at any moment in time, except, possibly, at ti ∈ T .
Construct a directed graph D = (V,A) with:

V = {s1} ∪ {vj |Jj ∈ J \ π} ∪ {w1, w2, . . . , wq−1} ∪ {s2},

where s1 is the source and s2 the sink; vj is a node associated with the
unscheduled job Jj ; wi ∈ V is associated with the interval [ti, ti+1]. D
has the following arcs:

• (s1, vj) with capacity pj ;

• (vj , wi) if rj ≤ ti and dj ≥ ti+1 with capacity ti+1 − ti;

• (wi, s2) with capacity max{k|1 ≤ k ≤m, ck ≤ ti} · (ti+1 − ti).

The number max{k|1 ≤ k ≤m, ck ≤ ti} is the number of machines that
is available in the interval [ti, ti+1] for processing jobs from J \ π.

Example 5.2

Figure 5.2 shows the graph D for the instance in Table 5.2 with
ub = 5 and π = J1J2. This means that J1 is scheduled on machine
M1 and completes at time 10. J2 is scheduled on machine M2 and
completes at time 13; therefore, c1 = 10 and c2 = 13. The deadlines
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Figure 5.2: The graph D.

for the jobs J3 and J4 with ub = 5 are 44 and 19, respectively. Then,
T = {r3, r4, d3, d4, c1, c2} = {4, 0, 44, 19, 10, 13} = {0, 4, 10, 13, 19, 44}.
We denoted the node wi associated with time interval [ti, ti+1] by ti-ti+1;
so, 13-19 is the node corresponding to the interval [13, 19]. The numbers
at the arcs denote their capacities. Note that during the intervals [0, 4]
and [4, 10] no machine is available for processing either job J3 or J4.
We could have left the nodes corresponding to these intervals out of the
graph.

In D, there exists a flow of value
∑

Jj∈J\π pj if and only if a pre-
emptive schedule for the unscheduled jobs exists with maximum late-
ness smaller than ub (see, e.g., Labetoulle et al. [50] and Federgruen and
Groenevelt [26]). So the problem of determining whether the maximum
lateness in an optimal preemptive schedule is smaller than ub is equiva-
lent to finding a maximum flow in the constructed graph D. Therefore,
the preemptive lower bound can be computed in O(n3) time.
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Carlier’s lower bound

Carlier [18] gives a lower bound on the optimal makespan for the paral-
lel-machine scheduling problem in which the jobs have heads and tails.
Based on this lower bound, one can derive a lower bound for the problem
P |rj |Lmax.

Let A ⊆ J \ π and w := min(m, |A|). Suppose Ji1 , . . . , Jiw are the
jobs in A with the w smallest release dates and Jj1 , . . . , Jjw the jobs in
A with the w largest due dates. Then,

G(A) :=
(ri1 + . . .+ riw) +

∑
Jj∈A

pj − (dj1 + . . .+ djw)

w

is a lower bound on L∗
max, for any A ⊆ J . We refer to this lower bound

as Carlier’s lower bound.
We have chosen to compute Carlier’s lower bound for subsets Bk and

Dk of J , with Bk containing the k jobs with the k largest release dates,
and Dk containing jobs with the k smallest due dates (1 ≤ k ≤ |J \π|).

Of course, maxJj∈J\π{rj + pj − dj} is also a lower bound on the
optimal maximum lateness of jobs in J \ π.

5.3.4 Dominance rules

The dominance rules presented in Chapter 4 for the 1|rj , si|Lmax prob-
lem are valid for the individual machines in the current problem. The
most important dominance rule states that whenever a release date
of a job Jj is “too large”, then πJj is dominated by πJk for some
Jk ∈ J \ π. “Too large” can be expressed more formally by rj ≥
Ck(g(πJk)) + s(f(k), f(j)). If this dominance rule holds for Jj and Jk ,
then there is idle time before the processing of Jj in g(πJj). This idle
time can be used for processing Jk without interfering with the process-
ing of Jj .

Next, we mention a dominance rule that is specific for parallel-
machine scheduling problems. Suppose that π1 and π2 are different
permutations of the same subset of J . If g(π1) = g(π2), then π1 is
dominated by π2, and vice versa. So, we may discard one of them. We
can sharpen this rule slightly by saying that two schedules are equal
(possibly after renumbering the machines) if they have the same maxi-
mum lateness and each machine has the same completion time and ends
with a job from the same family in both schedules.
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5.4 Implementation and computational exper-

iments

5.4.1 Implementation

In Section 5.3.3, we presented two lower bounds: one based on a max-
flow algorithm for the preemptive case and one based on Carlier’s [18]
lower bound. In terms of quality, the preemptive lower bound dom-
inates Carlier’s lower bound. In terms of speed, however, it is the
other way around: Carlier’s lower bound takes O(n logm) time and
the preemptive lower bound O(n3) time. We tested three versions of
our branch-and-bound algorithm: one that uses the preemptive lower
bound only, one that uses Carlier’s lower bound only, and one that first
computes Carlier’s lower bound and then, if necessary, the preemptive
lower bound.

5.4.2 Computational experiments

The performance of the branch-and-bound algorithm was evaluated for
instances with up to 25 jobs and two or three machines. All parameters
were randomly generated from discrete uniform distributions, except
for the release dates that come from a Poisson process. The processing
times were drawn from the interval [1, 100], the number of families F
from the interval [2, +n/5,], and the family indices of the jobs from [1, F ].
Let p denote the average processing time for the jobs. In addition to n
and m, there are three input parameters:

• k, defining the mean interarrival time k · p/m,

• t, defining the interval [rj + pj , rj + pj + t · p] from which the due
date of job Jj is drawn,

• s, defining the interval [1, s · p] from which the setup times are
drawn.

For n = 10, 15, 20, 25, m = 2, 3, k = 1, 1.2, 1.4, t = 1, 3 and s =
0.2, 0.6, 1 we generated instances. For each combination of n,m, k, t and
s, we generated 15 instances. Table 5.3 summarizes our computational
results for varying values of n and k.
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n k heur Car %Car pmtn %pmtn both %both

10 1.0 30 180 100 180 100 180 100
10 1.2 36 180 100 180 100 180 100
10 1.4 47 180 100 180 100 180 100
15 1.0 15 175 97.2 167 92.8 169 93.9
15 1.2 23 179 99.4 174 96.7 178 98.9
15 1.4 40 180 100 180 100 180 100
20 1.0 8 134 74.4 111 61.7 114 63.3
20 1.2 17 166 92.2 147 81.9 153 85.0
20 1.4 28 177 98.3 167 92.8 171 95.0
25 1.0 10 95 52.8 71 39.4 79 43.9
25 1.2 8 128 71.1 113 62.8 115 63.9
25 1.4 16 154 85.6 132 73.3 139 77.2

Table 5.3: Test results for varying n and k.

The parameter k determines the workload on the machines: the
smaller k, the higher the workload. The column ‘heur’ gives the number
of times out of 180 that one of the heuristics found an optimal solution.
The column ‘Car’ gives the number of times the algorithm found an
optimal solution within one minute on an HP 9000/710 workstation
using Carlier’s lower bound only. The column ‘%Car’ gives this number
as a percentage of the 180 instances. The columns ‘pmtn’, ‘%pmtn’,
‘both’ and ‘%both’ give the same data, but now for the algorithm that
uses the preemptive lower bound only, and for the algorithm with both
lower bounds. We see that the algorithm using Carlier’s lower bound
only gives the best results: it is the only algorithm that solves almost
all instances with up to 15 jobs. Also, the instances with a workload
less than 100% (k = 1) are solved quite often for problems with up to
20 jobs. The reason for this is that although more nodes are searched,
the time per node is much smaller in this algorithm, compared with
the algorithms that use the preemptive lower bound. This can also be
concluded from Table 5.4. In this table, the column ‘n_Car’ gives the
mean number of nodes searched in the algorithm with Carlier’s lower
bound only and the column ‘s_Car’ gives the mean computation time
in seconds for this algorithm. The means are taken over those instances
that are solved within one minute. The columns ‘n_pmtn’, ‘s_pmtn’,
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n k n_Car s_Car n_pmtn s_pmtn n_both s_both

10 1.0 811 0.2 484 0.5 484 0.3
10 1.2 481 0.1 343 0.3 343 0.2
10 1.4 242 0.0 182 0.1 182 0.1
15 1.0 14,936 2.4 3,695 5.1 4,377 3.9
15 1.2 7,314 1.0 2,789 3.0 3,674 2.9
15 1.4 3,615 0.6 2,181 2.5 2,181 1.8
20 1.0 40,822 6.1 6,272 10.0 7,610 7.6
20 1.2 36,054 5.2 6,712 7.7 8,831 7.0
20 1.4 15,685 2.2 4,633 4.5 5,642 4.3
25 1.0 52,642 6.6 6,323 7.7 11,053 9.2
25 1.2 37,391 4.4 6,464 7.6 7,401 5.9
25 1.4 34,786 4.3 6,287 6.6 8,844 7.0

Table 5.4: Mean number of nodes investigated and mean computation
time.

‘n_both’ and ‘s_both’ give the corresponding data for the algorithm
with the preemptive lower bound only and the algorithm with both
lower bounds.

For the instances that were solved to optimality with the algorithm
using Carlier’s lower bound only, Table 5.5 displays the mean optimal
maximum lateness in the column ‘L∗

max’, and the mean lower and up-
per bound in the root of the search tree in the columns ‘lb’ and ‘ub’,
respectively.

5.5 Conclusions

This chapter discussed the branch-and-bound algorithm we have de-
veloped for the problem P |rj , si|Lmax. This algorithm is based on the
algorithm for the single-machine case discussed in Chapter 4. In the
single-machine case, a dominance rule, concerning the release date of a
job being too large, was effective. This dominance rule does not work as
well in this problem, because the mean interarrival time in this problem
is, of course, smaller. We have observed that Carlier’s lower bound is
more effective than the preemptive lower bound.
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n k lb L∗
max ub

10 1.0 7.0 11.6 29.0
10 1.2 -0.1 2.6 19.0
10 1.4 -3.1 -2.4 14.3
15 1.0 24.4 35.2 51.3
15 1.2 11.5 20.0 37.9
15 1.4 5.2 9.2 26.1
20 1.0 37.6 59.1 77.4
20 1.2 17.4 29.9 46.8
20 1.4 8.7 15.8 33.0
25 1.0 53.0 83.5 99.0
25 1.2 28.1 51.6 64.5
25 1.4 19.3 33.9 51.5

Table 5.5: The optimal maximum lateness and lower and upper bounds.

In the next chapter, we test the Shifting Bottleneck (SB) procedure
in a machine shop in which setup times occur. The decomposition for
such shops results in single-machine scheduling problems with setup
times. We use optimization algorithms and some heuristics for solving
these single-machine scheduling problems. For both cases, the perfor-
mance of the SB procedure is evaluated.
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Chapter 6

Assembly shop scheduling

6.1 Introduction

In Section 1.2, we motivated the need for integral shop floor scheduling
procedures, referring to changing market conditions, in particular the
demand for short and reliable delivery times. Up to now, we have re-
stricted our attention to machine shops producing jobs with linear rout-
ings, i.e., each job consists of a chain of operations. After completion,
these jobs are delivered, or used in the assembly department. Scheduling
systems usually do not consider the interaction between manufacturing
and assembly departments. Current practice in discrete manufacturing
is to use a global capacity planning and materials coordination system,
such as Manufacturing Resource Planning (MRP II; see Wight [84]), for
the coordination between departments, whereas shop floor scheduling
systems, if used at all, are implemented at department level.

Shorter and more reliable leadtimes can be realized if the scheduling
system includes both manufacturing and assembly, as well as materials
procurement, engineering, and so on. MRP II systems use a fixed off-set
leadtime for manufacturing a part or assembling a product. Manufac-
turing leadtimes depend, however, on the actual work load, product mix,
and lot-sizes. MRP II systems try to circumvent coordination problems
by making the fixed off-set leadtime large, e.g., by allowing a pre-set
waiting or queueing time for each operation. In MRP II, the capacity
planning function is usually a simple “bucket filling” procedure that
ignores job interference due to different routings. This approach is sim-
ple, but does not lead to a flexible production system, able to respond



94 6 - A�����	 ���� ���������

quickly to a variable market demand. Indeed, practice shows that MRP
II systems generally perform reasonably well in a stable make-to-stock
or assemble-to-stock environment, but are inadequate in small batch
parts manufacturing shops. A natural question is therefore whether
for such make-to-order companies intelligent scheduling systems can be
developed that include both manufacturing and assembly operations.

Problem complexity has often been used as an argument against
integral scheduling, together with the observation that many a dis-
turbance would quickly render such an integral schedule obsolete. As
to the first argument, we now have adequate hardware, software, and
scheduling algorithms to cope with the complexity. As to the other
argument, it appears that many of the disturbances are caused by inac-
curate scheduling. For instance, if the availability of scarce secondary
resources, such as cutting tools and fixtures, are not considered, then it
is no surprise that operations are delayed due to the absence of these
resources; cf. Meester [56] and Chapter 3 in this thesis. In addition,
rescheduling, the most obvious way to deal with disturbances, is now a
feasible option thanks to the increased computer power.

Specifically, the Shifting Bottleneck (SB) procedure, as outlined in
Chapters 2 and 3, provides a good basis for the development of in-
telligent heuristics that allow integration of parts manufacturing and
assembly scheduling. To demonstrate this, we study in this chapter
some simple assembly scheduling problems and show that the extended
SB procedure yields satisfactory results.

Literature on assembly shop scheduling, i.e., machine scheduling
where jobs may have convergent routings, mainly concentrates on empir-
ical analysis of priority rules; see, for example, Maxwell and Mehra [55],
Russell and Taylor [69], Goodwin and Weeks [35], and Miller et al. [58].
Recently also a number of papers have appeared that study the com-
plexity of assembly scheduling problems and present heuristics with
a performance guarantee as well as optimization algorithms. Lee et
al. [53] consider a machine shop with three machines. Two machines
produce components, whereas the third machine assembles those com-
ponents. The objective is to minimize the makespan. They prove the
NP-hardness of this problem, propose a branch-and-bound algorithm,
and develop heuristics based on Johnson’s algorithm (Johnson [45]) for
the problem F2||Cmax. One heuristic has a worst-case performance ra-
tio of 3

2 , i.e., the makespan of the schedule generated with this heuristic
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is at most 3
2 times the optimal makespan. Potts et al. [64] consider a

similar problem, but now with m machines that produce components.
They also prove the NP-hardness of the problem and develop a heuris-
tic, which is basically a generalization of the heuristic of Lee et al. [53],
with a worst-case performance ratio of 2 − 1

m
. Another heuristic has

an absolute performance guarantee of 5
4pmax, i.e., the difference of the

makespan of the schedule generated by this heuristic and the optimal
makespan is at most 5

4pmax, where pmax is the maximum processing time
of any operation. Brucker and Thiele [14] develop a branch-and-bound
algorithm for machine shops in which sequence dependent setup times
occur and with arbitrary precedence relations between operations. This
algorithm is based on the algorithm of Brucker et al. [13], discussed in
Section 2.3.1. The assembly shop scheduling problem is a special case
of the problem they consider. Due to the hardness of the problem, they
can solve only relatively small instances. Coffman et al. [21] consider a
single-machine scheduling problem in which the machine produces two
component types and assembles them to end products. Whenever the
machine switches from producing one component type to the other, a
setup time is needed. Coffman et al. present efficient algorithms that
minimize the total flow time

∑
Cj .

In the next section, we start to investigate some small parts manufac-
turing and assembly scheduling problems and show how the techniques
developed in preceding chapters can be used in an overall scheduling
procedure. Next, we turn to more realistic, larger problems in which
we necessarily have to use heuristics instead of exact algorithms for the
single-machine scheduling problems. We maintain the iterative decom-
position approach of the SB procedure for the overall coordination of
the activities, however. We compare the empirical performance of the
extended SB procedure with priority rules that reportedly perform well.
In Section 6.3, we end this chapter with conclusions. This chapter is
based on Schutten [72].

6.2 Computational experiments

The SB procedure has proven to be an effective algorithm for the classic
job shop problem, cf. Vaessens et al. [79]. In this section, we analyze the
empirical performance of the procedure in assembly shops. We study
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the effect of static and dynamic scheduling, setup times, batch sizes,
and the job arrival process.

6.2.1 A small test shop

The first test shop that we consider has four machines M1, . . . ,M4. M1

produces component A, M2 produces component B, and M3 produces
component C. A job is an order to produce a product consisting of a
single component that is no part of an assembly, or an order to produce
a product consisting of different components that need to be assembled.
M4 is used to assemble components. An assembly can start only when
all the required components are available. Jobs arrive for producing the
job types A, B, C, AB, AC, and BC. Jobs arrive at the shop according
to a Poisson process with a mean interarrival time of 60 time units.
Upon arrival, we determine what type of product is ordered. Each type
has an equal probability of being chosen. We draw the processing times
of operations onM1,M2, andM3 from the discrete uniform distribution
on the interval [85, 115]. For operations on M4, we draw the processing
times from the discrete uniform distribution on the interval [65, 85].
WheneverM4 switches to assembling other components, we need a setup
time of 120 units. The due date of job Jj is set to dj = rj + Pj + nj ·
Dj , with rj the release date (equal to the arrival time), Pj the total
processing time, and nj the number of operations of Jj . We draw Dj

from the discrete uniform distribution on the interval [200, 400]. The
generated instances contain 60 jobs.

Priority rules

A practical way to schedule jobs in a shop is by use of priority rules. In
the literature, priority rules are extensively tested for assembly shops, cf.
Russell and Taylor [69] and Fry et al. [29]. We compare the performance
of the SB procedure with two types of priority rules which have been
shown to perform well for assembly shops without setup times:

1. ρij = −dj ,
and

2. ρij = −slackij ,
with ρij the priority of operation Oij , and slackij the slack of this oper-
ation, that is, slackij = dj −Pij , where Pij denotes the total processing
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time of Oij and of operations of job Jj that need to be processed after
operation Oij . So, the first priority rule focuses on the due date of the
job; the second one focuses on the slack that operations have. For op-
erations on a machine with setup times, we decrease the priority of an
operation with β · setup, with setup the required setup time. We vary
β from 0 to 20 with steps of 0.5, which results in 82 combinations.

Shifting Bottleneck procedure

The decomposition of the machine shop scheduling problem results in
a series of 1|rj |Lmax problems for the machines M1, M2, and M3. For
machine M4, it results in the problem 1|rj , si|Lmax. Recall that the
convergent job routings do not change the single-machine scheduling
problems. We test two variants of the extended SB procedure: if pos-
sible, the first uses exact algorithms for the single-machine scheduling
problems; the second uses heuristics for these problems. Note that
delayed precedence constraints do not occur in the problems that we
consider.

The first variant of the extended SB procedure uses Carlier’s algo-
rithm (Carlier [17]) for solving the 1|rj |Lmax problems and the branch-
and-bound algorithm developed in Chapter 4 for the 1|rj , si|Lmax prob-
lem. In that chapter, we observed that if the branch-and-bound algo-
rithm solves an instance to optimality, then the computation time is
in general small. We therefore stop computation when the algorithm
does not find the optimal solution within 10 seconds and use the best
solution found so far. In this case, the single-machine schedule may not
be optimal.

The second variant of the extended SB procedure uses heuristics for
the single-machine scheduling subproblems. For the machines without
setup times, we use the extended Jackson rule (Jackson [44]). For the
machine with setup times, we use priority rules. In this case, the pri-
ority of operation Oij is ρij = late − β ·NP , with late the lateness of
this operation if Oij would be the next operation to be scheduled, and
NP the non-productive machine time . The non-productive machine
time consists of setup time and idle time, i.e., NP is the difference be-
tween the start of Oij and the completion of the previous operation.
Again, we vary β from 0 to 20 with steps of 0.5 and take the delayed
precedence constraints into account. Whenever the machine with setup
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times must be scheduled within the SB procedure, we evaluate the 41
combinations. The schedule delivered by the best combination is used
by the coordination mechanism of the SB procedure.

Results

Table 6.1 summarizes our computational experiments for the small test
shop. Each row in this table presents the average performance over

Algorithm time Lmax # late jobs mean tardiness

pri 14.4 115.3 3.2 12.3
sb1 20.9 -39.9 3.1 8.3
sb2 1.1 17.8 3.6 10.6

Table 6.1: Computational results for small test shop.

30 instances. The first column indicates the algorithm we used: ‘pri’
stands for the priority rules, ‘sb1’ stands for the extended SB procedure
with exact algorithms for the single-machine scheduling subproblems,
and ‘sb2’ stands for the extended SB procedure that uses heuristics
for the single-machine scheduling subproblems. The column with the
header ‘time’ shows the mean computation time in seconds on an HP
9000/710 workstation. For the priority rules, this is the total time to
evaluate all 82 combinations. The column ‘Lmax’ displays the average
value of the maximum lateness. The column ‘# late jobs’ lists the
average number of late jobs, i.e., the number of jobs that finish after
their due dates, whereas the last column displays information on the
mean tardiness, which is defined as

∑n
j=1 Tj/n, with Tj = max{0, Lj}

and n the number of jobs. For the priority rules, the data in the row
‘pri’ of Table 6.1 show for each performance criterion the average best
value of all schedules generated by the priority rules.

We see that the SB procedure with the exact algorithms for the
single-machine scheduling problems (sb1) clearly outperforms the other
algorithms, albeit at the expense of more computation time. The SB
procedure with heuristics for the single-machine scheduling problems
(sb2) performs better on the performance criteria “maximum lateness”
and “mean tardiness” and slightly worse on the criterium “# late jobs”
than the best priority rule. In the next section, we further compare sb2
to priority rules on larger instances. Due to the size of the instances in-
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volved, we do not use exact algorithms for the single-machine scheduling
subproblems any more.

6.2.2 Large test shops

The first large test shop that we consider is similar to the small test
shop. It has four machines M1, . . . ,M4. M1 produces component A,
M2 produces component B, and M3 produces component C. M4 is
used to assemble components. Now, all possible combinations of com-
ponents A, B, and C are considered. So, jobs arrive for producing A,
B, C, AB, AC, BC, and ABC. Jobs arrive at the shop according to a
Poisson process with a mean interarrival time of 70 time units. Upon
arrival, we determine what type of product is ordered. Each type has
an equal probability of being chosen. We draw the processing times of
operations on M1, M2, and M3 from the discrete uniform distribution
on the interval [85, 115]. We consider problems with and without setup
times on M4. If no setup times occur, then we draw the processing
times for operations on M4 from the discrete uniform distribution on
the interval [90, 130]. Otherwise, the interval we draw from is [65, 85].
Table 6.2 lists the setup times on M4 in the latter case. The logic

to
AB AC BC ABC

− 200 200 200 300
AB 0 120 120 100

from AC 120 0 120 100
BC 120 120 0 100
ABC 20 20 20 0

Table 6.2: Setup times on M4.

behind these setup times is the following. Whenever a component is
assembled, a specific tool is needed. If a component is not assembled,
this tool should not be present at the machine. Mounting a tool on the
machine takes 100 time units; unmounting a tool takes 20 time units.
Note that we now consider sequence dependent setup times onM4. The
due date of job Jj is set in the same way as in the small test shop.

The second large test shop has two machines, M1 and M2. M1 pro-
duces components A and B, whereas M2 assembles these components
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to end products. Again, jobs arrive at the shop following a Poisson pro-
ces, but now with a mean interarrival time of 100 time units. Each job
that arrives at the shop is an order to produce a product consisting of
components A and B that need to be assembled. We consider problems
with and without setup times on the first machine. For problems with
setup times, a setup time is needed whenever the machine switches from
producing components A to producing components B and the other way
around. The required setup time is 60 time units in both cases. We
draw the processing times for operations on the first machine from the
discrete uniform distribution on the interval [10, 60]. For problems with-
out setup times, the processing times on the first machine come from
the discrete uniform distribution on the interval [10, 70]. The processing
times for operations on the second machine are drawn from the discrete
uniform distribution on the interval [60, 100]. Again, the due dates of
the jobs are set in the same way as in the small test shop.

We also want to study the effect of static and dynamic scheduling on
the performance of the SB procedure. Static scheduling means that all
jobs of an instance are scheduled in one go. Dynamic scheduling means
that we split a set of jobs into smaller sets. In the tests, we do this in
the following way. First, let T be such that on average 200 jobs arrive
at the shop during the interval [0, T ]. Then, T = 200 · 70 = 14, 000 for
the first test shop, and T = 20, 000 for the second test shop. Schedule
all jobs that arrive in the interval [0, 2 ·T ]. We call this the first run. All
operations that start in the interval [0, T ] are fixed. Now, all operations
that were scheduled in the first run but not fixed, and all jobs that
arrive in the interval [2 · T, 3 · T ] are scheduled. This is the second
run. All operations that start in the interval [T, 2 · T ] are fixed. This
process continues until all operations are fixed. For static scheduling, we
generate instances with 500 jobs. For dynamic scheduling, we generate
instances with 2, 000 jobs.

Results

Table 6.3 shows information about the computation time. Each row in
this table gives the average over 30 instances. The first column indi-
cates whether setup times occur (S) or not (NS). The second column
indicates whether the instances are scheduled statically (stat) or dynam-
ically (dyn). The columns with the header ‘pri’ show the average com-
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S/ stat/ shop 1 shop 2
NS dyn pri SB pri SB

NS stat 1.0 4.8 2.0 6.2
NS dyn 4.0 29.0 5.3 37.4
S stat 49.1 16.3 70.0 21.0
S dyn 173.3 102.9 410.2 156.7

Table 6.3: Average computation time in seconds.

putation time in seconds to evaluate all combinations on a HP 9000/710
workstation. For instances without setup times, we evaluate two com-
binations; for instances with setup times, we evaluate 82 combinations.
The columns ‘SB’ show the average computation time of the SB proce-
dure. Recall that the version of the SB procedure used here is equal to
sb2 of Section 6.2.1. For instances that are scheduled dynamically, this
time is the aggregate time of all the runs. The computation times of the
SB procedure are acceptable. Even for problems with 2, 000 jobs, the
mean computation time does not exceed three minutes. Computing 82
schedules with priority rules takes less than three minutes for the first
shop and less than seven minutes for the second shop. Note that the
problems for the second shop contain on average more operations than
those for the first shop.

Table 6.4 reports on some performance measures of the different
schedules for the first shop. Each row lists averages over 30 instances.
The first two columns indicate again whether setup times occur and

S/ stat/ Lmax # late jobs mean tardiness
NS dyn pri SB pri SB pri SB
NS stat 361.0 277.0 32.0 35.2 18.4 17.3
NS dyn 1159.3 986.1 224.2 254.7 55.8 54.0
S stat 604.1 354.8 46.4 51.0 25.1 20.6
S dyn 1039.9 713.0 241.0 263.0 39.5 33.2

Table 6.4: Performance measures for the first shop.

whether the SB procedure solves the instances statically or dynami-
cally. The third and the fourth column give information about the
maximum lateness. The third column displays the average best value of
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the maximum lateness of all schedules generated by the priority rules.
The fourth column gives the average value of the maximum lateness
of the schedule generated with the SB procedure. We see that the SB
procedure significantly outperforms the best priority rule. The columns
with the common header ‘# late jobs’ show information about the sec-
ond performance measure we consider: the number of late jobs, i.e., the
number of jobs that complete after their due dates. On average, the
best priority rule gives better results than the SB procedure. The last
criterion we consider is mean tardiness for which the columns with the
common header ‘mean tardiness’ give information. For this criterion,
the SB procedure is clearly better again. We could have anticipated that
the SB procedure performs well for the criterion “maximum lateness”
and worse for the criterion “the number of late jobs”, because the SB
procedure tries to minimize the maximum lateness and therefore prefers
solutions with many jobs a little late to solutions with few jobs much
late. We also see in Table 6.4 that the performance of the SB procedure
remains satisfactory if we use it dynamically. This is useful in practice,
because those problems might be too large to schedule statically.

Table 6.5 displays the same information as Table 6.4, but now for
problems for the second shop. Note that for the problems without setup

S/ stat/ Lmax # late jobs mean tardiness
NS dyn pri SB pri SB pri SB
NS stat -10.5 -17.9 7.3 7.1 2.3 2.2
NS dyn 281.5 281.7 25.3 24.8 2.7 2.7
S stat 243.5 204.5 25.5 22.6 9.1 7.5
S dyn 552.6 499.8 123.1 100.2 12.1 9.0

Table 6.5: Performance measures for the second shop.

times the performance of the SB procedure not really differs from the
best priority rule. For problems with setup times, the SB procedure
outperforms the best priority rule for all displayed performance mea-
sures.

Table 6.4 and 6.5 compare the SB procedure for different perfor-
mance measures with the best priority rule for each measure. The best
priority rule for, e.g., the maximum lateness may be another rule than
the one that gives the best solution for the mean tardiness criterion. In
practice, however, one is interested in a single solution with a good max-
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imum lateness, few jobs too late, and a small mean tardiness. Table 6.6
compares the solution values of the SB procedure with the solution val-
ues of the priority rule that results in the best maximum lateness for
the first shop, on which the remainder of this section focuses. Columns

S/ stat # late jobs mean tardiness
NS dyn pri SB pri SB

best ml best ml
NS stat 32.0 32.2 35.2 18.4 18.4 17.3
NS dyn 224.2 225.4 254.7 55.8 56.1 54.0
S stat 46.4 59.5 51.0 25.1 31.5 20.6
S dyn 241.0 280.7 263.0 39.5 47.3 33.2

Table 6.6: Comparison of solution values.

three and six give again the solution value of the best priority rule.
The columns that have the label ‘ml’ give the values of the performance
measures of the schedule generated with the priority rule that results in
the best maximum lateness. The best priority rule gives better results
for the number of late jobs than the SB procedure. For the problems
without setup times, the values in the column ‘ml’ deteriorate, but they
are still better than the value of the SB schedule. For the problems with
setup times, however, the values in the column ‘ml’ are worse than the
values of the SB schedule. The mean tardiness of the best priority rule
is worse than the value of the schedule generated by the SB procedure.
Of course, the values deteriorate in the column ‘ml’. We conclude that
compared with priority rules, the SB procedure produces a schedule of
good maximum lateness and mean tardiness. The number of late jobs
in this schedule is acceptable.

In the tests above, a job is always an order to produce one compo-
nent or product. An interesting effect to study is the impact of batch
arrivals, that is, a job is an order to produce a number of the same
components or products. In the remaining tests, we determine a batch
size of the jobs that arrive at the shop. We draw the batch size of a job
from a discrete uniform distribution on the interval [1, 5]. The mean
batch size is therefore three. In Table 6.7, we present results for the
case that the arrival time of the next job depends on the batch size
of this job. More specifically, assume that q is the batch size of this
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job. Then, the interarrival time for the next job is drawn from a neg-
ative exponential distribution with a mean of 100 · q time units. With
this arrival process, we try to simulate the situation that the sales de-
partment of a company tries to relieve the production department after
getting a large order. Note that we increased the mean processing time
by a factor three, whereas we increased the mean interarrival time by
a factor 100

70 · 3 > 4. We see from Table 6.7 that the due date perfor-

S/ stat/ Lmax # late jobs mean tardiness
NS dyn pri SB pri SB pri SB
NS stat 1005.5 906.8 57.6 66.5 31.6 35.3
NS dyn 1767.7 1644.3 244.6 274.7 39.0 42.7
S stat 872.6 796.1 49.1 58.0 23.6 27.5
S dyn 1368.8 1268.8 209.5 240.5 26.4 30.3

Table 6.7: Results for batch arrivals.

mance of the shop deteriorates, although we decreased the workload. A
similar behavior is found in queueing theory. Whitt [82], for example,
shows for the GI |G|m queue that the mean waiting time of jobs in the
queue increases with increasing variation in both the arrival and ser-
vice processes. For the criteria “maximum lateness” and “the number
of late jobs”, the SB procedure performs comparable to the previous
tests. Due to the large maximum lateness, the performance of the SB
procedure is worse for the criterion “mean tardiness”.

Due to the large variation in the arrival process, the due date per-
formance of the shop in the previous test was poor. Now, we study the
due date performance of the shop with a more regular arrival process.
We use an Erlang-4 distribution for the interarrival times, which is the
summation of four drawings from a negative exponential distribution.
The variance of an Erlang-4 distribution with mean λ−1 is half the vari-
ation of a negative exponential distribution with mean λ−1. The mean
interarrival time is again 300 time units. Table 6.8 summarizes our test
results for this situation. We see that indeed the due date performance
of the shop improves significantly with a more regular arrival process.
For a company it might therefore be advantageous to try to regulate
the arrival process. The SB procedure still works comparable to the
situation with no batch arrivals. The differences, however, are smaller,
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S/ stat/ Lmax # late jobs mean tardiness
NS dyn pri SB pri SB pri SB

NS stat 422.4 404.6 25.1 25.9 6.7 6.7
NS dyn 728.7 689.7 102.2 107.7 7.2 7.3
S stat 364.8 348.4 21.9 23.0 5.4 5.4
S dyn 562.3 521.1 88.5 92.3 5.1 5.2

Table 6.8: Test results with Erlang-4 arrival process.

which is explained by the smaller workload of the shop.

6.3 Conclusions

We compared the performance of two versions of extended SB proce-
dure and the most common priority rules with each other. Setup times
occurred in the shops we considered, and the jobs had convergent rout-
ings. The SB procedure with algorithms that solve the single-machine
scheduling problems to optimality if possible, outperforms both the SB
procedure with heuristics for the single-machine scheduling problems
and the priority rules. The SB procedure with heuristics outperformed
the priority rules. For part manufacturing shops, due date perfor-
mance is important. Therefore, it might be a good choice to replace
the scheduling of a shop with priority rules by a more sophisticated
approach like the SB procedure. Also, attention should be paid to the
regulation of the arrival process.

In the next chapter, we discuss J��P�����, a commercial shop
floor scheduling system that is based on the extended SB procedure.
We also discuss practical experiences with this scheduling system in a
company producing printed circuit boards.
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Chapter 7

A practical job shop

scheduler

7.1 Introduction

In Chapter 3, we discussed various extensions to the SB procedure to
deal with practical job shops. This extended SB procedure is part of
the commercial shop floor control system J��P�����. Heerma and
Lok [41] use Figure 7.1 to position J��P����� in its environment.
The production planning system, which is often an MRP II system, in-
forms J��P����� which jobs need to be scheduled. The engineering
database contains information on how a product is produced. The shop
floor data collection system monitors the shop status, e.g., whether a
machine is down, and gathers short term scheduling information. For
frameworks for shop floor control, we refer to Tiemersma [76] and Ar-
entsen [5].

In the next section, we briefly discuss the components of J��P��-
���. Section 7.3 reports on some experiences with J��P����� in a
company producing printed circuit boards. Section 7.4 ends this chapter
with some conclusions.

7.2 JobPlanner

As we see in Figure 7.1, J��P����� consists of five main compo-
nents: the database manager, the automatic scheduler, the graphical
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user interface, the schedule editor, and the evaluation component.

Graphical user interface

Evaluation
component

Production
planning
system

Shop floor
data collection

system

Engineering
database

Schedule
editor

Automatic
scheduler

Database manager

User

JobP
lanner

Figure 7.1: J��P����� and its environment.

We briefly discuss these components in the following subsections.

7.2.1 Database manager

The database manager communicates with the production planning sys-
tem, the engineering database, and the shop floor data collection sys-
tem. It extracts data from these databases and stores it in a local shop
floor database. In addition to the information on the jobs that must
be produced and how this should be done, it contains data about the
shop status. For example, when an operation is completed or a machine
breaks down, this information is stored in the local shop floor database.
This makes this database dynamic, i.e., it changes over time.
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7.2.2 Automatic scheduler

The automatic scheduler is based on the SB procedure of Adams et al. [2]
extended to deal with practical features, as discussed in Chapter 3.
Through the database manager, it gets information like job routings
and processing times from the local shop floor database. The scheduler
proposes a schedule, which is stored in the database.

7.2.3 Graphical user interface

The graphical user interface is an important means for man-machine
interaction. Figure 7.2 shows an example of a graphical user interface.
In this figure, we see buttons on which the user can click with his

Figure 7.2: Example of a graphical user interface.

mouse device to perform actions like starting the automatic scheduler,
downloading information from a database, printing of information, and
so on. Also, the user can start actions by means of a menu.

An element in the graphical user interface for scheduling systems
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is the electronic planning board. The electronic planning board uses
Gantt charts to represent schedules and provides the means to modify
schedules by manipulating the Gantt chart; cf. Wennink [80]. Figure 7.3
depicts an electronic planning board that is divided in two parts. The

Figure 7.3: An electronic planning board.

upper part of this planning board is a Gantt chart in which the resources
are shown along the vertical axis. The time is shown along the horizontal
axis. The narrow rectangles represent the down times of the resources;
the other rectangles represent scheduled operations. The lower part
of the planning board shows information about unscheduled jobs. For
a more elaborate discussion about the importance of planning boards
in complex scheduling situations, we refer to Anthonisse et al. [3] and
for the importance of representation and visualization in the context of
optimization, we refer to Jones [46].
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7.2.4 Evaluation component

Besides a graphical representation, a scheduler needs data to evaluate
the quality of a schedule. Useful is, e.g., data on the delivery perfor-
mance, machine utilization, makespan, and throughput times. Data can
be represented in the form of tables, graphs, and throughput diagrams
(see Wiendahl [83]), and so on. Figure 7.4 shows a report available in
J��P�����. For more information about envisioning information,

Figure 7.4: A report of J��P�����.

we refer to Tufte [77, 78].

7.2.5 Schedule editor

In a scheduling system, the planner should have the ability to create,
modify, store, and retrieve schedules. The scheduler oversees, for exam-
ple, practical problems that have not been modeled. The interaction
between the planner and the scheduling system is crucial to end up with
a feasible schedule. In this context, interaction means the integration
of human perception and mechanical algorithms; cf. Savelsbergh [70].

Bruggink [15] distinguishes six groups of schedule editing functions
that a scheduling system should have: generate, edit, analyze, optimize,
shop status, and extra functions. Generate functions enable the planner
to generate schedules manually or automatically. Edit functions are
functions to modify an existing schedule, such as exchanging and adding
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operations to a schedule. The analyze functions give information on
the properties of the current schedule, such as delivery performance,
makespan, operations on a longest path, and so on. Optimize functions
help the planner to optimize a selected part of a schedule under the
constraint that the unselected part is not affected. Also, they recover
infeasibilities in a given schedule. The shop status functions provide
information about the shop floor, such as completed operations and
machine breakdowns. The extra functions contain functions that are
not categorized in the first five groups. This group of extra functions
includes the possibility to set precedence constraints between operations
of different jobs.

7.3 Practical experiences

In the last few years, J��P����� has been tested in various compa-
nies in the discrete manufacturing. In this section, which is partly based
on work by Heerma [40], we report on experiences with J��P����� at
Cityprint B.V., which is located in Almelo, The Netherlands. Cityprint
is a large Dutch producer of printed circuit boards (PCBs). Currently,
there are about 140 employees, of which about 100 are production per-
sonnel or production engineers. The machine shop consists of about
40 machines. The annual turnover is more than 25 million guilders, of
which more than 50% is due to export to countries in Europe. Produc-
tion, and even engineering, is to customer order. The leadtimes are at
most two to four weeks. Cityprint uses two base materials for produc-
ing PCBs: teflon and epoxy. Teflon is used, for example, for PCBs in
satellite dishes and epoxy for PCBs in computers and television sets.
The PCBs have one up to eight track layers.

The production system of Cityprint can be divided in six production
groups: production engineering, cutting, through hole plating, imaging,
pressing, and testing. For each customer order, production engineering
makes an internal order. For each order, it determines the necessary
production steps and the order and the machines on which they have to
be performed. The cutting group cuts teflon and epoxy plates covered
with copper foil to the required sizes and drills holes in them. The
through hole plating group takes care that the faces of the drilled holes
get plated with copper. Whenever there is a switch from plating teflon
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PCBs to plating epoxy PCBs and vice versa, a setup time is needed. The
imaging group makes the copper tracks on the PCBs. It uses a photo-
sensitive material and a film of the track. At places that have not been
exposed to light, the copper is removed through etching. The pressing
group presses a number of plates to one multi-layered PCB. Finally, the
testing group tests the produced PCBs for example on short-circuits. A
typical job consists of 20 operations.

The introduction of J��P����� at Cityprint has been satisfac-
tory. First of all, the graphical representation of schedules has increased
the insight of the planner into the actual workload of the production
system, which has made it relatively easy to trace bottlenecks in the pro-
duction system and respond appropriately. The sales department can
also use the insight in the actual workload of the production system
by quoting feasible and competitive delivery dates. The introduction of
J��P����� has reduced the time for production planning. It used to
be a full-time job; now, it takes only one or two hours a day. Hence,
there is more time to think about structural improvements of the pro-
duction process. In the first year that J��P����� was used, 95% of
the jobs were delivered in time, the output increased by 15%, and the
throughput times decreased by 25%.

7.4 Conclusions

We have discussed a commercial shop floor scheduling system. This sys-
tem uses the extended Shifting Bottleneck procedure for scheduling jobs
in machine shops. Experiences with the system have been satisfactory.
We discussed practical experiences at Cityprint, where the time used
for production planning is reduced significantly, along with an increase
of the insight into the actual status of the shop increased. The delivery
performance has been high, the output increased, and the throughput
times decreased significantly after the introduction of the scheduling
system in this company.

In the next chapter, some general conclusions and suggestions for
further research will conclude this thesis.
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Chapter 8

Epilogue

In this chapter, we summarize our results. We stress again the impor-
tance of an integral planning and scheduling approach, especially for
machine shops in which setup times occur. We end this chapter with
some conclusions.

8.1 Summary

We have motivated the development of an integral shop floor planning
and scheduling system by pointing out the need for short leadtimes and
reliable due dates. Based on the Shifting Bottleneck (SB) procedure
of Adams et al. [2] for the classic job shop problem, we have designed
and analyzed the algorithmic framework for a shop floor scheduling sys-
tem for practical job shops. Our algorithms can handle job shops with
release and due dates of jobs, setup times, parallel machines, transporta-
tion times, unequal transfer and production batches, multiple resource
requirements, preemptive and non-preemptive down times, convergent
and divergent job routings, and open shop characteristics.

For machine shops in which setup times occur, a scheduling system
should find a trade-off between efficiency and leadtime performance; this
is a common trade-off in practice. On the one hand, clustering jobs with
the same setup characteristics on a machine leads to an efficient use of
this machine. On the other hand, clustering jobs may lead to a poor
leadtime performance of jobs with other setup characteristics. Shop
efficiency may even be low, since other machines may not receive the
right jobs in time. We therefore feel that an analytic approach to these
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problems in a complex job shop environment represents a fundamental
contribution. For reasons explained earlier, the SB procedure appeared
to be a natural candidate to be extended for scheduling machine shops
with setup times.

The SB procedure decomposes the problem of scheduling a machine
shop into a series of machine scheduling problems. The presence of setup
times on one or more machines results for those machines in machine
scheduling problems of minimizing maximum lateness in which we have
to take the setup times into account. For the special case of family,
or sequence independent, setup times, we have developed a branch-
and-bound algorithm. Our computational experiments show that this
algorithm solves most instances with up to 40 jobs to optimality within
one minute. A major algorithmic novelty is the concept of setup jobs to
compute strong lower bounds. We have developed sufficient conditions
to separate jobs within one family by a setup time. If these conditions
hold, then a setup job is added to the job set with a release and due
date, and processing time. There exist precedence relations between
this setup job and the real jobs. On average, the introduction of setup
jobs halves the gap between the lower bound in the root of the search
tree and the optimal solution value. We also studied the parallel ma-
chine equivalent of the single-machine scheduling problem with setup
times. For a broad class of parallel-machine scheduling problems, we
have characterized a set of at most n! solutions that contains at least
one optimal solution. The parallel-machine scheduling problem that we
studied belongs to this class. For this problem, we are able to solve
most instances with up to 20 jobs to optimality in reasonable time.

Although the modeling of convergent job routings is quite easy, it is
important from a practical point of view. We empirically tested the SB
procedure in shops with setup times and convergent job routings. In
terms of delivery performance, the SB procedure significantly outper-
formed priority rules that reportedly perform well for assembly shops.

The commercial shop floor scheduling and planning system J��-

������ uses the SB procedure to schedule practical job shops. We
discussed the experiences with this system at a manufacturer of printed
circuit boards. The introduction of J�������� in this company was
successful: the delivery performance increased and the throughput times
decreased, while more PCBs were made.
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8.2 Conclusions

We have developed the algorithmic framework of an integral shop floor
planning and scheduling system. The system is able to handle a broad
range of practical problems. Our computational results for randomly
generated instances show that our algorithms significantly outperform
simple priority rules. In practice, J��������, with our algorithms
embedded, has led to a significantly better delivery performance as well.

Further research on shop floor scheduling is a practical necessity,
nonetheless. Here, we mention four areas.

First, further research needs be done to model other machine types,
such as batch processors that can process more than one job at a time.

Second, better algorithms can be designed for scheduling machines
with sequence dependent setup times. In Chapter 6, we studied the
empirical performance of the SB procedure in machine shops with setup
times. We observed that the quality of the algorithms for the machine
scheduling subproblems has a significant impact on the performance of
the SB procedure.

Third, further research needs to be done to incorporate alternative
job routings in the SB procedure. In Section 3.10, we have shown that
alternative processing orders of operations can be modeled easily. Fur-
ther research needs to be done to incorporate alternative job routings
that follow from different machines being able to perform an operation.

Finally, there is need for a better capacity planning function than
the simple “bucket filling” algorithm used by MRP II systems, which
ignores job routings. Alternatives for this algorithmmight be based on a
combination of linear programming and machine scheduling algorithms.
The extended SB procedure that can handle convergent job routings is
a candidate for such a scheduling algorithm.
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Appendix A

Single-machine scheduling

with preemptive down

times

In this appendix, we show that the algorithm of Carlier [17] for the
problem 1|rj |Lmax can easily be generalized to deal with preemptive
down times. Let σ be the schedule produced by the extended Jackson
rule. Reindex the jobs in order of increasing completion times in σ. Let
Jk be the last job in σ for which Lk(σ) = Lmax(σ) and let Jj be the first

job in σ for which we have that Ck(σ) = rj +
∑k

i=j pi +DT(rj , Ck(σ)),
where DT (a, b) denotes the total down time in the interval [a, b]. Let Jc
be the last job in σ belonging to the set {Jj , . . . , Jk} for which dc > dk
and define C = {Jc+1, . . . , Jk}.

Theorem A.1 In any optimal schedule, Jc is scheduled either before
all jobs in C, or after all jobs in C.

Proof. Due to the way σ is constructed, we have that at start time
Sc(σ) of Jc in σ no job belonging to C is available for processing, i.e.,
ri > Sc(σ) for all Ji ∈ C. In the interval [Sc(σ),minJi∈C ri], the machine
processes Jc in σ during minJi∈C ri − Sc(σ) −D(Sc(σ),minJi∈C ri) > 0
time units. Let σ∗ be any optimal schedule with Jc scheduled somewhere
in-between the jobs in C. Let Jq ∈ C be the job that is processed later
in σ∗ than any other job in C. Since Cq(σ∗) ≥ Ck(σ) + minJi∈C ri −
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Sc(σ)−D(Sc(σ),minJi∈C ri) > Ck(σ), and dq ≤ dk , we have that

Lmax(σ
∗) ≥ Lq(σ

∗)

= Cq(σ
∗)− dq

> Ck(σ)− dk
= Lk(σ)

= Lmax(σ),

which is a contradiction. �



131

Index

A

absolute performance
guarantee . . . . . . . . . . .95

acyclic . . . . . . . . . . . . . . . . . . . . . .21
algorithm

approximation . . . . . . . . . . 22
branch-and-bound . . . . . . 27
complete enumeration . . .23
exact . . . . . . . . . . . . . . . . . . . 22
Horn’s rule . . . . . . . . . . . . . 69
iterative improvement . . .31
local search . . . . . . . . . . . . . 30
longest path . . . . . . . . . . . . 23
maximum flow . . . . . . . . . .86
priority rule . . . . . . . . .30, 96
Shifting Bottleneck

procedure . . . . . . . . . . .32
simulated annealing . . . . .32
taboo search . . . . . . . . . . . .31

arc . . . . . . . . . . . . . . . . . . . . . . . . . 20
machine . . . . . . . . . . . . . . . . 22

assembly shop . . . . . . . . . . . . . . 93
automatic scheduler . . . . . . . .109

B

batch . . . . . . . . . . . . . . . . . . . . .4, 58
production . . . . . . . . . . . . . .47
transfer . . . . . . . . . . . . . . . . .47

batch processor . . . . . . . . . . . . 117
batching . . . . . . . . . . . . . . . . . . . . 59

bound
lower . . . . . . . . . . . . . . . . . . . . 8
upper . . . . . . . . . . . . . . . . . . .27

branch-and-bound . . . . . . . . . . 27
branch-and-bound tree . . . . . . 28

root . . . . . . . . . . . . . . . . . . . . 28

C

capacity planning . . . . . . 93, 117
classification scheme . . . . . . . . 12
combinatorial optimization . . 14
complete enumeration . . . . . . .23
completion time . . . . . . . . . . . . . .6
complexity theory . . . . . . . . . . .14
consistent . . . . . . . . . . . . . . . . . . .63
convergent routing . . . . . . . . . . 52
cycle . . . . . . . . . . . . . . . . . . . . . . . .21

D

database manager . . . . . . . . . .108
decision problem . . . . . . . . . . . . 15
delayed precedence

constraint . . . . . . . . . . 55
deterministic machine

scheduling . . . . . . . . . . . 1
deviate . . . . . . . . . . . . . . . . . . . . . 82
disjunctive graph

representation . . . . . . 20
divergent routing . . . . . . . . . . . .52
dominance . . . . . . . . . . . . . . . . . . 29
dominance criterion . . . . . . . . . 73



132 I����

dominant . . . . . . . . . . . . . . . . . . . 80
down time . . . . . . . . . . . . . . .13, 50

non-preemptive . . . . . . . . . 50
preemptive . . . . . . . . . . . . . 50

due date . . . . . . . . . . . . . . . . . 6, 43

E

EDD rule . . . . . . . . . . . . . . . . . . . . 6
edge . . . . . . . . . . . . . . . . . . . . . . . . 20
electronic planning board . . 110
engineering database . . . . . . .107
evaluation component . . . . . . 111

F

family setup time . . . . . . . . . . . 44
flexible manufacturing cell . . .49
flow shop . . . . . . . . . . . . . . . . . . . 13
FMC . . . . . . . . . . . . . . . . . . . . . . . 49
full rank . . . . . . . . . . . . . . . . . . . . 64

G

Gantt chart . . . . . . . . . . . . . . . . . . 3
graphical user interface . . . . 109

H

Horn’s rule . . . . . . . . . . . . . . . . . .69

I

induction . . . . . . . . . . . . . . . . . . . 63
graph . . . . . . . . . . . . . . . . . . .63
left . . . . . . . . . . . . . . . . . . . . . 63
right . . . . . . . . . . . . . . . . . . . .63

induction graph . . . . . . . . . . . . .63
initial setup job . . . . . . . . . . . . . 64
instance . . . . . . . . . . . . . . . . . . . . . .7

size . . . . . . . . . . . . . . . . . . . . .14
iterative improvement . . . . . . . 31

J

Jackson’s rule . . . . . . . . . . . . . . . .6

extended . . . . . . . . . . . . . . . . .7
job shop . . . . . . . . . . . . . . . . .13, 19

practical . . . . . . . . . . . . 16, 42
J�������� . . . . . . . 17, 42, 107

L

late job . . . . . . . . . . . . . . . . . . . . . 98
lateness . . . . . . . . . . . . . . . . . . . . . . 6

maximum . . . . . . . . . . . . 6, 43
left-induce . . . . . . . . . . . . . . . . . . 63
left-justified . . . . . . . . . . . . . . . 3, 6
list scheduling. . . . . . . . . . . . . . .80
local optimum . . . . . . . . . . . . . . 31
local search

iterative improvement . . .31
Shifting Bottleneck

procedure . . . . . . . . . . .32
simulated annealing . . . . . 32
taboo search . . . . . . . . . . . . 31

local search algorithm . . . . . . .30
lot-sizing . . . . . . . . . . . . . . . . . . . .59
lot-streaming . . . . . . . . . . . . . . . 60
lower bound. . . . . . . . . . . . . . . . . .8

M

machine scheduling . . . . . . . . . . .1
classification scheme . . . . 12
deterministic . . . . . . . . . . . . .1

makespan . . . . . . . . . . . . . . . 13, 19
maximum flow algorithm . . . . 86
maximum lateness . . . . . . . .6, 43
MRP II . . . . . . . . . . . . . . . . . . . . .93
multiple resources . . . . . . . . . . .48

N

neighbor . . . . . . . . . . . . . . . . . . . . 30
neighborhood . . . . . . . . . . . . . . . 30
non-delay schedule . . . . . . . . . . 81
non-productive machine time97



I���� 133

NP . . . . . . . . . . . . . . . . . . . . . . . . .15
complete . . . . . . . . . . . . . . . .15
hard . . . . . . . . . . . . . . . . . . . .16

O

open shop . . . . . . . . . . . . . . .13, 53
operation . . . . . . . . . . . . . . . . . . . . 4
order . . . . . . . . . . . . . . . . . . . . . . . 14
orientation . . . . . . . . . . . . . . . . . .21

complete . . . . . . . . . . . . . . . .21
feasible . . . . . . . . . . . . . . . . . 21
partial . . . . . . . . . . . . . . . . . .21

P

P . . . . . . . . . . . . . . . . . . . . . . . . . . .15
parallel machines . . . . . . . .12, 44

identical . . . . . . . . . . . . . . . . 12
uniform . . . . . . . . . . . . . . . . .12
unrelated . . . . . . . . . . . . . . . 12

path . . . . . . . . . . . . . . . . . . . . . . . . 21
length . . . . . . . . . . . . . . . . . . 21
longest . . . . . . . . . . . . . . . . . 22

polynomially solvable . . . . . . . 14
practical job shop . . . . . . . 16, 42
precedence graph . . . . . . . . . . . 68
precedence relation . . . . . . . . . .61

≺ . . . . . . . . . . . . . . . . . . . . . . .61
 . . . . . . . . . . . . . . . . . . . . . . .61

preemption . . . . . . . . . . . . . . . . . . 2
preemption . . . . . . . . . . . . . . . . . 13
priority rule . . . . . . . . . . . . . 30, 96
processing time . . . . . . . . . . . . . . 6
production batch . . . . . . . . . . . .47
production planning system 107

R

rank . . . . . . . . . . . . . . . . . . . . . . . . 64
full . . . . . . . . . . . . . . . . . . . . . 64

real job . . . . . . . . . . . . . . . . . . . . . 61

regular . . . . . . . . . . . . . . . . . . . . . .80
release date . . . . . . . . . . .7, 33, 43
right-induce . . . . . . . . . . . . . . . . .63
robust . . . . . . . . . . . . . . . . . . . . . . 46
root . . . . . . . . . . . . . . . . . . . . . . . . 28
routing . . . . . . . . . . . . . . . . . . . . . . 4

alternative . . . . . . . . . . . . .117
convergent . . . . . . . . . . . . . .52
divergent . . . . . . . . . . . . . . . 52

run-out time . . . . . . . . . . . . . . . . 33

S

safely scheduled . . . . . . . . . . . . .65
schedule . . . . . . . . . . . . . . . . . . . . . 3

editor . . . . . . . . . . . . . . . . . 111
left-justified . . . . . . . . . . . 3, 6
list . . . . . . . . . . . . . . . . . . . . . 80
non-delay . . . . . . . . . . . . . . . 81
robust . . . . . . . . . . . . . . . . . . 46

schedule editor . . . . . . . . . . . . .111
scheduling . . . . . . . . . . . . . . . . . . . 1

assembly shop . . . . . . . . . . 93
job shop . . . . . . . . . . . . . . . . 19
list . . . . . . . . . . . . . . . . . . . . . 80
machine . . . . . . . . . . . . . . . . . 1
practical job shop . . . . . . .41

search tree . . . . . . . . . . . . . . . . . . 23
root . . . . . . . . . . . . . . . . . . . . 28

separating setup job. . . . . . . . .62
sequence . . . . . . . . . . . . . . . . . . . . . 3
sequence dependent setup

time . . . . . . . . . . . . . . . . 80
sequence independent setup

time . . . . . . . . . . . . . . . . 58
setup job . . . . . . . . . . . . . . . . . . . 61

consistent . . . . . . . . . . . . . . .63
initial . . . . . . . . . . . . . . . . . . .64
rank . . . . . . . . . . . . . . . . . . . . 64



134 I����

separating . . . . . . . . . . . . . . 62
unrelated . . . . . . . . . . . . . . . 67

setup time . . . . . . . . . . . . . . 43, 57
family . . . . . . . . . . . . . . .44, 57
sequence dependent . 13, 80
sequence independent13, 58

Shifting Bottleneck
procedure . . . . . . . 32, 53

shop floor data collection
system . . . . . . . . . . . . 107

simulated annealing . . . . . . . . . 32
size of an instance . . . . . . . . . . .14
small batch parts

manufacturing . . . . . . . 4
sublot . . . . . . . . . . . . . . . . . . . . . . 59

T

taboo search . . . . . . . . . . . . . . . . 31
tardiness . . . . . . . . . . . . . . . . . . . .98
tardy . . . . . . . . . . . . . . . . . . . . . . . 13
total flow time . . . . . . . . . . . . . . 95
transfer batch . . . . . . . . . . . . . . .47
transitive reduction . . . . . . . . . 64
transitivity . . . . . . . . . . . . . . . . . .22
transportation time . . . . . . . . . 45

U

unrelated setup job . . . . . . . . . 67
upper bound . . . . . . . . . . . . . . . .27

W

worst-case performance ratio 94



135

Samenvatting

Bij machine schedulingproblemen moeten bewerkingen aan produkten
verroosterd worden op machines met het doel een bepaalde prestatie-
indicator te minimaliseren, rekening houdend met een aantal randvoor-
waarden. Een machine kan bijvoorbeeld vaak maar één bewerking
tegelijk uitvoeren en de bewerkingen aan een produkt moeten in een
bepaalde volgorde uitgevoerd worden.

In dit proefschrift wordt algoritmiek ontwikkeld voor scheduling-
problemen die opgelost moeten worden voor de logistieke besturing van
werkplaatsen, met name in de kleinseriefabricage. Deze werkplaatsen
worden geconfronteerd met de vraag naar korte doorlooptijden en een
hoge leverbetrouwbaarheid. We tonen aan dat integrale werkplaats-
besturingssystemen kortere doorlooptijden en een hogere leverbetrouw-
baarheid mogelijk maken. De schedulingproblemen die ontstaan zijn
in feite jobshop schedulingproblemen met additionele randvoorwaarden.
Na een algemene inleiding op de schedulingtheorie, bepreken we het job-
shop schedulingprobleem en algoritmen om dit probleem op te lossen.

Een van de algoritmen die we bespreken is de Shifting Bottleneck
(SB) procedure van Adams e.a. [2] die in redelijke tijd goede oplossin-
gen genereert. Deze procedure decomponeert het jobshop scheduling-
probleem in een aantal één-machine schedulingproblemen die relatief
makkelijk op te lossen zijn. Iedere instantie van het jobshop schedul-
ingprobleem kan worden gerepresenteerd door een disjuncte graaf. Door
het veranderen van eigenschappen van deze graaf en het veranderen van
de algoritmen voor de één-machine schedulingproblemen kan de SB pro-
cedure uitgebreid worden om met tal van praktijksituaties om te gaan.
We noemen transporttijden, simultaan gebruik van hulpmiddelen en
omsteltijden.

Omsteltijd is de tijd die nodig is voor het gereed maken van een
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machine om een volgende bewerkingen uit te voeren, bijvoorbeeld om-
dat gereedschappen gewisseld moeten worden. Gedurende deze tijd is
deze machine niet in staat om bewerkingen uit te voeren en dit betekent
dus eigenlijk capaciteitsverlies. Er zal een balans gevonden moeten wor-
den tussen efficiënt machinegebruik en een goede leverbetrouwbaarheid.
Aan de ene kant is het heel aantrekkelijk bewerkingen met dezelfde in-
stelkarakteristieken direkt na elkaar uit te voeren om zo de machine
efficiënt te gebruiken. Dit kan echter ten koste gaan van de lever-
betrouwbaarheid van produkten die bewerkingen vereisen met andere
instelkarakteristieken. Bovendien kan het efficiënt gebruiken van één
machine leegloop veroorzaken van andere machines, omdat deze niet
voldoende aanvoer van produkten krijgen.

Indien de Shifting Bottleneck procedure gebruikt wordt voor het
schedulen van een werkplaats waarin machines met omsteltijden voor-
komen, dan resulteert de decompositie voor deze machines in machine
schedulingproblemen waarbij rekening moet worden gehouden met deze
omsteltijden. Voor het speciale geval van familieomsteltijden ontwikke-
len we een algoritme dat in staat is om problemen met 40 bewerkin-
gen in redelijke tijd optimaal op te lossen. Daarnaast generaliseren we
dit algoritme voor het probleem waarin bewerkingen op een parallelle-
machinegroep gescheduled moeten worden. In dit probleem moet iedere
bewerking toegewezen worden aan een van de identieke machines in de
groep. Tussen bewerkingen op dezelfde machine zijn omsteltijden nodig.
We vergelijken de prestatie van de SB procedure met die van prioriteits-
regels voor werkplaatsen waarin omsteltijden voorkomen en onderdelen
geassembleerd worden tot eindprodukten.

De SB procedure met uitbreidingen is onderdeel van het commerciële
werkplaatsbesturingssysteem J��P�����, dat wordt geleverd door
het ingenieursbureau FLEX, Engineers in Logistic Systems. We be-
spreken dit systeem en het gebruik ervan bij Cityprint B.V., een print-
panelenfabriek in Almelo. Het invoeren van J��P����� bij Cityprint
heeft veel succes gehad: de doorlooptijden gedaald, terwijl het aantal
geproduceerde printpanelen en de leverbetrouwbaarheid zijn gestegen.


